

Basics of Cervix Cancer Brachytherapy

David Gaffney MDPhD, FASTRO, FACR

University of Utah

Huntsman Cancer Institute

Incidence Cervix: 445,000

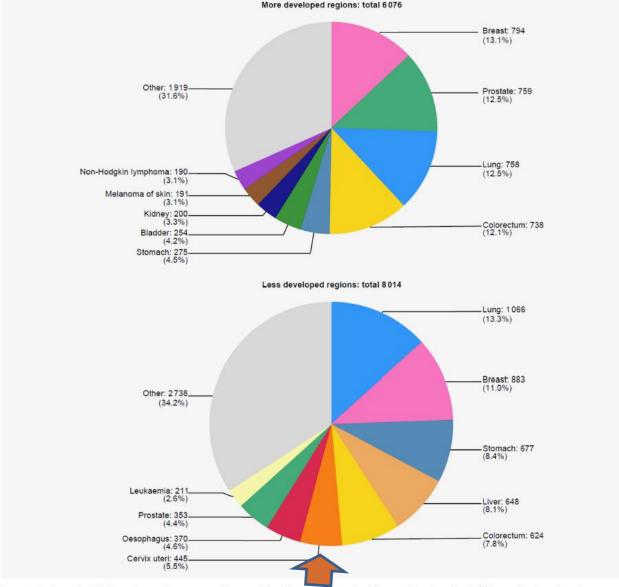
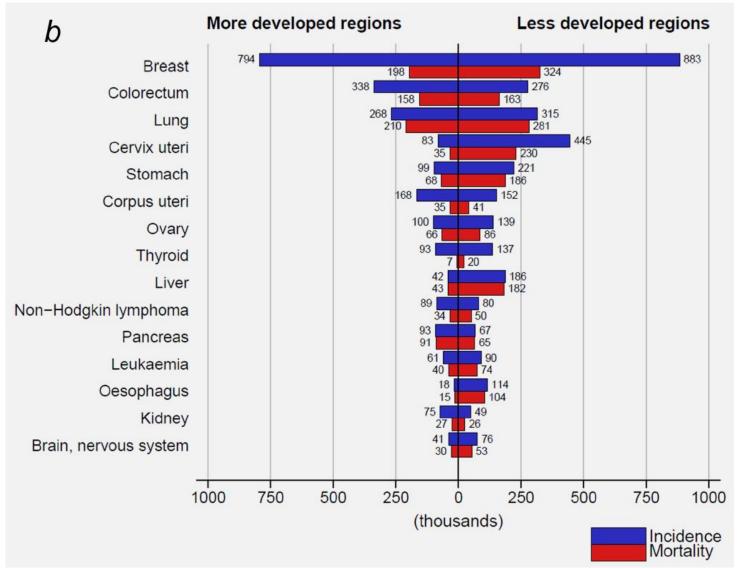


Figure 3. Estimated global numbers of new cases (thousands) with proportions for (a) more developed and (b) less developed regions, both sexes combined, 2012. The area of the pie is proportional to the number of new cases.

Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012 Int J Cancer 2015

Jacques Ferlay¹, Isabelle Soerjomataram¹, Rajesh Dikshit², Sultan Eser³, Colin Mathers⁴, Marise Rebelo⁵, Donald Maxwell Parkin⁶, David Forman¹ and Freddie Bray¹



Cervix Cancer Demographics

- 87% of cervix cancer occurs in less developed regions of the world
- 18 fold difference in mortality rate for cervix cancer depending on region of the world

Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012 Int J Cancer 2015

Incidence and Mortality in More and Less Developed Regions for Women

Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012 Int J Cancer 2015

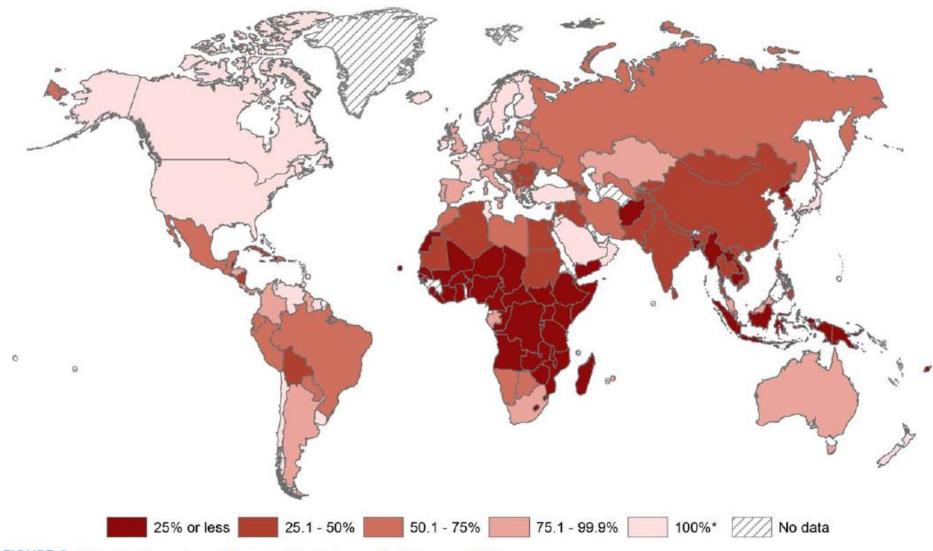
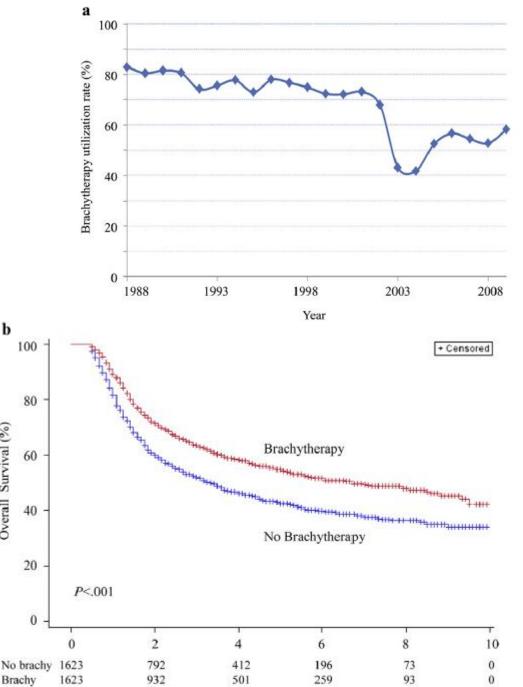
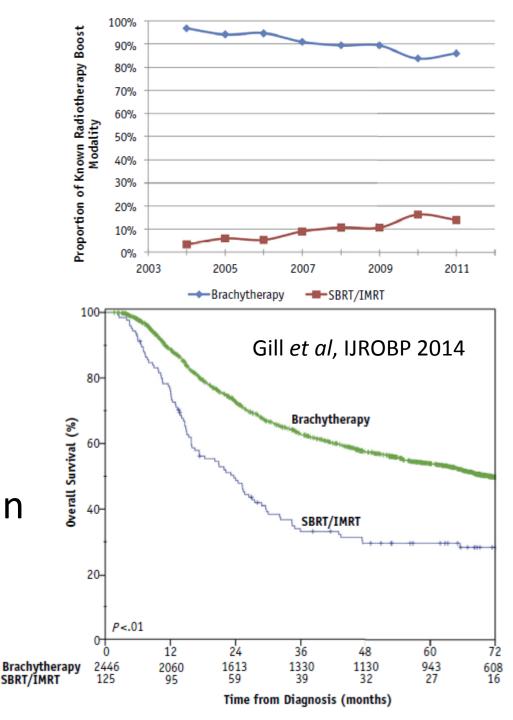
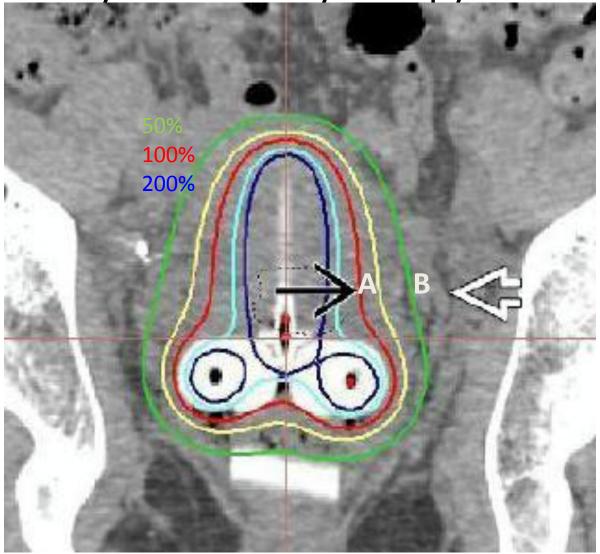



FIGURE 3. Estimated Percentage of Patients Able to Access Radiotherapy, 2013.

Trends in Brachytherapy in the US

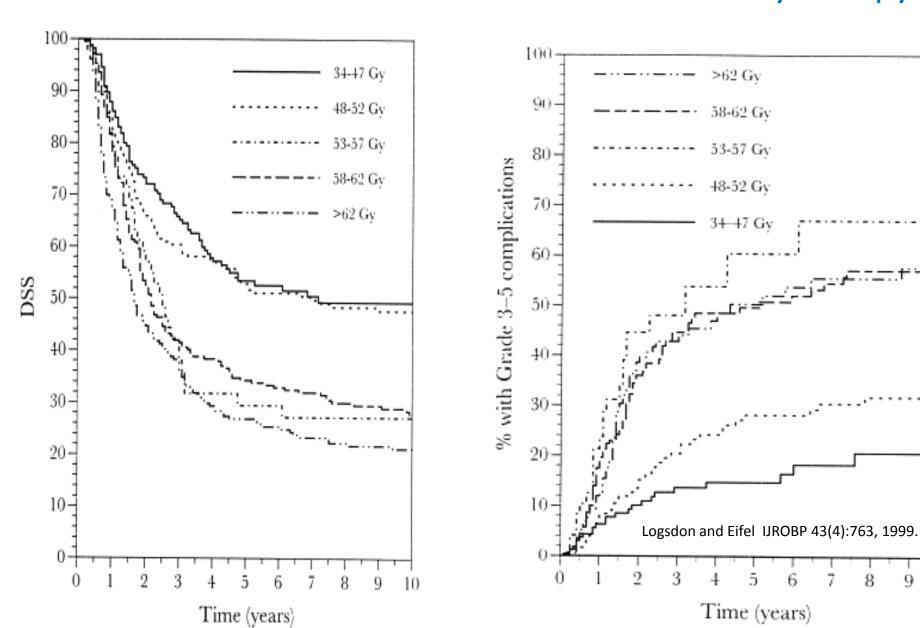
Han et al IJROBP 2013


- SEER study
- 7359 patients
- 1988-2009
- 37% EBRT alone
 Brachytherapy use OSolo (%) [Revival) HR 0.66 (95% CI 0.6-.74)


Time (Years)

Is type of boost important in cervix cancer?

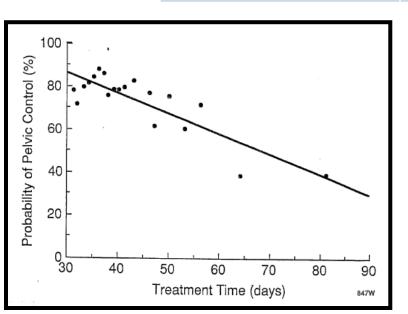
- NCDB analysis
- 2004-2011
- 7654 patients
- SBRT/IMRT survival decrement was > than omission of chemo (p<0.01)


Why does Brachytherapy work?

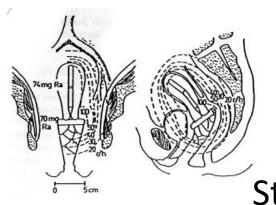
In a study of 125 patients from Washington University, probit analysis estimated the mean dose required for ≥90% local control to be 260 Gy (P<.001).

Dyk et al IJROBP, 90:794-801, 2014

Successful Tx of advanced cervix cancer requires combination of external beam and brachytherapy

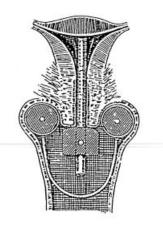

High dose rate vs low dose rate intracavity brachytherapy for carcinoma of the uterine cervix cancer: Systematic review and meta-analysis

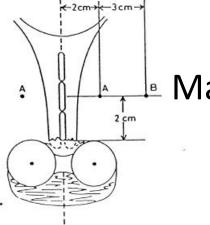
Lee KK et al Brachytherapy 14:449-457, 2015


- 18,937 patients
- 15 articles
 - 3 randomized trials
 - 12 retrospective studies
- No difference in survival, pelvic recurrence, rectal and bladder complications
- Liu et al Cochrane Meta-analysis: same conclusion

Importance of Overall Treatment Time

Study	Year	N	Outcome
PMH	1992	830	LC
Inst. Gustave Roussy	1993	386	LC OS
Patterns of Care	1993	837	LC OS
Washington Univ.	1995	1224	LC CSS
Univ. of Wisconsin	2013	206 RT 166 CRT	DFS not sig.

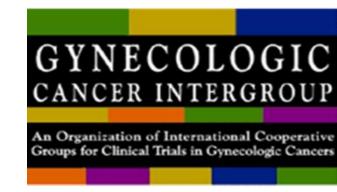

~1% loss of local control per day


1. Historic Good Results

2. Imaging → Renaissance

Stockholm

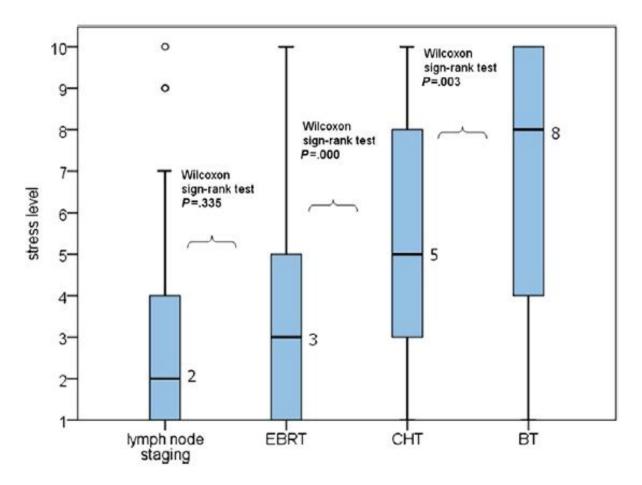
Paris



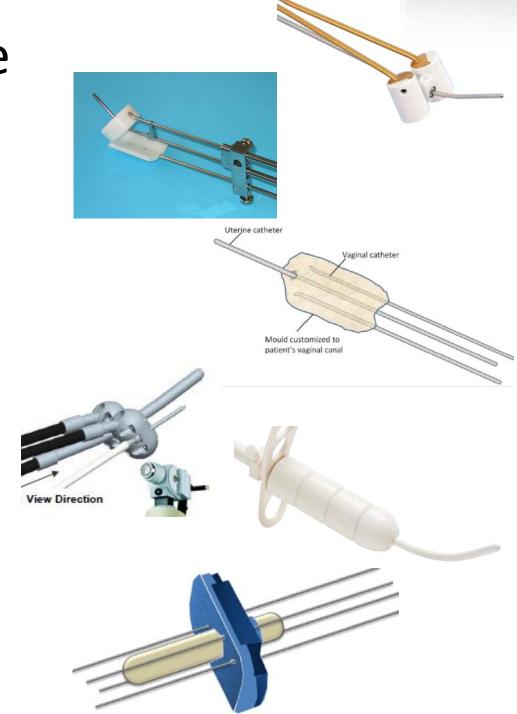
Manchester

Stage	% 5 yr cure (RT)	
I	79	
II	41	
III	27	
Regaud, Paris: 1922-26, n=329		

Anesthesia


- General
 - Laryngeal Mask Airway
 - Intubation
- Regional
 - Spinal
 - Epidural
- Monitored Anesthesia Care (MAC)
 - Procedural sedation
- Local
 - Pudendal block
- Oral medicines (Smit sleeve in place)
 - Narcotics
 - Benzodiazepines

Posttraumatic Stress Disorder After High-Dose-Rate Brachytherapy for Cervical Cancer With 2 Fractions in 1 Application Under Spinal/Epidural Anesthesia: Incidence and Risk Factors


Kirchheiner K et al IJROBP 89(1):260-7, 2014.

- N=50
- Validated questionnaires
- Acute Stress in 30%
- PTSD in 41%
- Helpful Experiences
 - Treatment team
 - Psychological support
 - Positive attitude
- Stressful Factors
 - Pain
 - Organizational problems
 - Immobility

Applicator Choice

- Tandem and Ovoids
 - Fletcher
 - Henschke
 - Rotterdam
- Tandem and Ring
- Vaginal Mold
- Combination applicators
 - Utrecht
 - Vienna
- Tandem and Cylinder
 - Miami
- Interstitial
 - Template based
 - Free hand
- Angle of tandem
- Diameter of upper vagina

INTRAOP US

- CT-based study showed a perforation rate of 14% (experienced investigators)
 - Still occurred 8% when physician was confident of correct placement
 - Physician concern, age > 60, and tumor size were predictors of perforation
- US should be used to avoid perforation
 - If perforation: consider antibiotics
- US can be used for treatment planning and IGBT

Barnes et al IJGC 17(4):821-6, 2007

Importance of Vaginal Packing

- Essential aspect of good technique
- For MRI packing
 - Ultrasound gel (best contrast)
 - Conjugated estrogen cream + ultrasound gel
 - Gadolinium
- For Xray or CT packing
 - Radiopaque wire impregnated gauze
 - Contrast soaked gauze

Swanick et al. Brachytherapy, 14(3):385-9, 2015

Does Impant Technique Effect Survival?

Corn et al. Gyn Onc 53:294300,1994

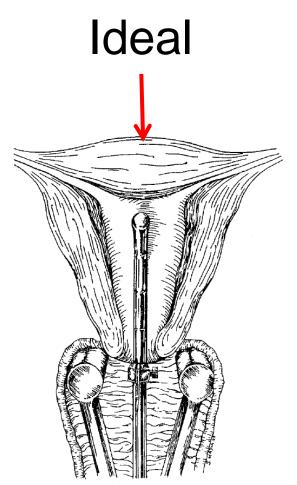


FIG. 3. Idealized brachytherapy implant for patients with carcinoma of the uterine cervix.

Displaced

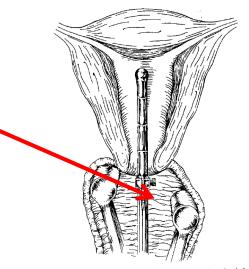


FIG. 2. Displacement of left colpostat. Note that the inferior tip of the caudal tandem source is separated from the left colpostat source.

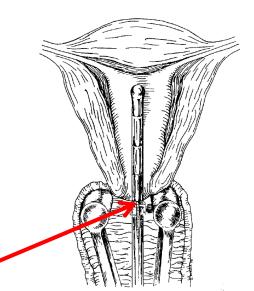


FIG. 1. Asymmetric implant. Note that the distance between the tandem and right colpostat is greater than the distance between the tandem and left colpostat.

Asymmetric

Local Control Impacts Survival

- > 85Gy, Multivariate Analysis p=0.01
- Technical adequacy of implant important determinant of local control

	Acceptable implant	Unacceptable implant
5 yr Local Control	68%	35%
5 yr Overall Survival	61%	42%

Corn et al. Gyn Onc 53:294300,1994

Use standard reference points (ICRU 38)

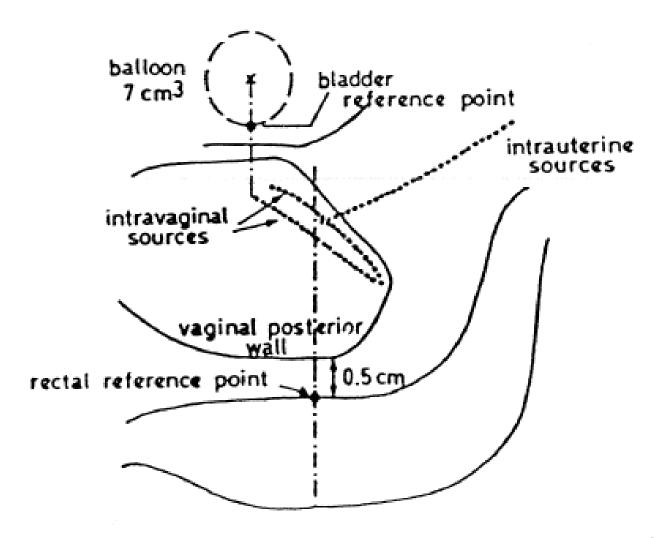
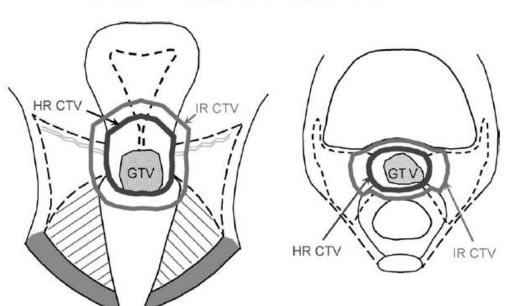



Fig. 3.2. Determination of the reference points for bladder and rectum (see text).

2D to 3D to 4D: Image Guided Brachytherapy

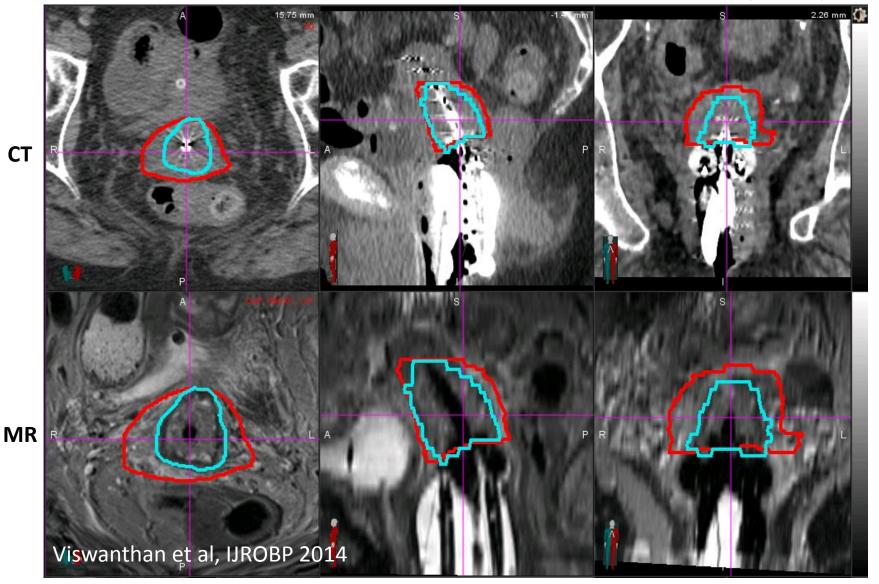
- Reduction in dose to OARs
- Dose escalation (improved tumor control)
- MR, CT and US can be used for IGBT
- Continue to use standard reference points
- Document HRCTV, D90, D2cc for bladder, rectum, and sigmoid

 **C. Haie-Meder et al. / Radiotherapy and Oncology 74 (2005) 235–245
- Iterative Brachy

Brachytherapy Dose

- Standard regimens
 - 5-6 Gy x 5
 - $-7 \, \text{Gy x 4}$
 - -8 Gy x 3
 - -9 Gy x 2
- 2 LDR implants preferable to 1
- Guiding principle: mitigating late toxicity

OAR Targets

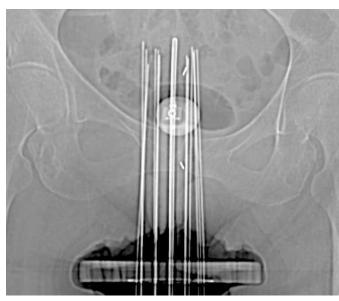

Volume	ABS	EMBRACE	Geortg et al ED10
D2cc bladder	<90 Gy	<90 Gy	101 Gy
D2cc rectum	<u><</u> 75 Gy	<u><</u> 70-75 Gy	78 Gy
D2cc Sigmoid	<u><</u> 75 Gy	<u><</u> 75 Gy	No recommendation

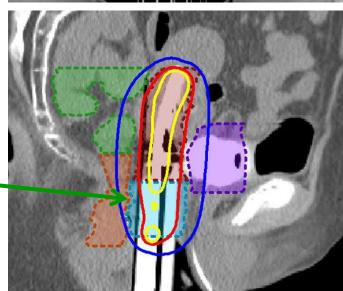
Doses in EQD2. Modified from Harkendrider et al IJROBP, 2015. ED10=dose corresponding to 10% rate of toxicity.

- ICRU rectal point/D2cc correspond
 - Limit to 70-75 Gy EQD2
- ICRU bladder point/D2cc do not correspond
 - 75 Gy for ICRU point dose
 - 90 Gy for D2cc dose

CT (red) vs. MR (blue) for IGBT

For all 3 cases, the mean tumor volume was smaller on MR than on CT (P<.001)


MR at the time of brachytherapy may be of greatest benefit in patients with large tumors with parametrial extension that have a partial or complete response to external beam.


Issues with MRI

- Superior soft tissue resolution
- HRCTV smaller than on CT
- Greater conformality will lead to decrease dose to OARs
 - More critical for large lesions
- First fraction or every fraction
 - Beware of significant tumor response
 - T_{1/2} for tumor response 20-21 days (CT, MR, clinical exam)

Indications for Interstitial Implant for Cervix Cancer

- Stage IIIA
- Large cancer not amenable to intracavitary approaches
- Recurrence after hysterectomy/radiation therapy
- Cervical stump cancer
 - Post supracervical hyst.
- Tandem should always be used (if possible)
- Subvolumes can easily be defined

Treatment planning

- Develop a standard
 - Team approach: Physician, Physicist, Nurse
- Plan each implant
- D90, V100, V150, V200, point A
 - Inverse Planning: watch the hot spots
- Combination applicators (Intracavitary + Interstitial)
 - Start with intracavitary positions, add ~10-15% of activity from the needle dwell positions
- Iterative approach

Conclusions

- The goal of treatment is cure with minimal side effects in most women
 - Stages I-IVa
- Brachytherapy works
- Incorporate advanced imaging
- Thanks for your attention!

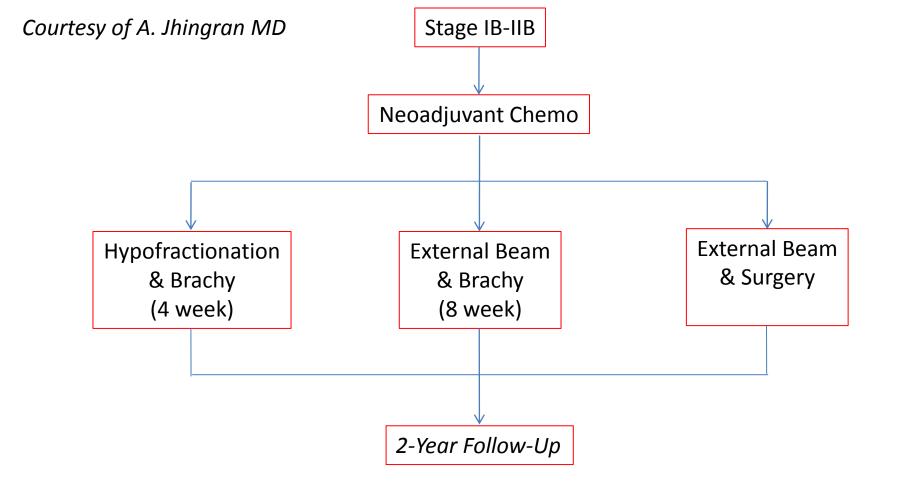
Definitive CRT: Trial Example

45 Gy/25 fractions

37.5 Gy/15 fractions

7 Gy x 4
Brachy

9 Gy x 2
Brachy


EBRT + SURGERY

ENDPOINT: RFS

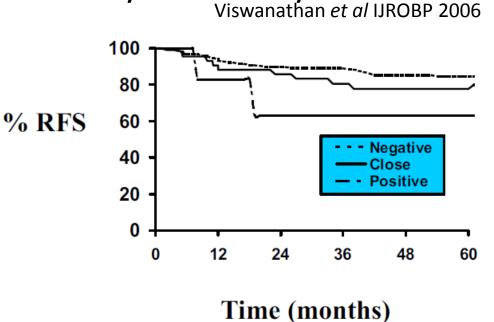
Hypofraction: BED and EQD2

Dose	Dose per fraction	Alpha/Beta	BED	EQD2
45	1.8	3	72.0	43.2
44	2.0	3	73.2	44.0
37.5	2.5	3	68.8	41.3
30	3.0	3	60.0	36.0
45	1.8	10	53.1	44.3
44	2.0	10	52.8	44.0
37.5	2.5	10	46.9	39.1
30	3.0	10	39.0	32.5
Brachy				
30	6.0	3	90.0	54.0
28	7.0	3	93.3	56.0
24	8.0	3	88.0	52.8
18	9.0	3	72.0	43.2
30	6.0	10	48.0	40.0
28	7.0	10	47.6	39.7
24	8.0	10	43.2	36.0
18	9.0	10	34.2	28.5

45/1.8 + 30/6 =**97.2 EQD2** vs 37.5/2.5 + 24/8 =**94.1 EQD2** for alpha/beta 3 $\underline{30 \text{ fractions vs } 18 \text{ fractions}}$

Outcomes: Non-inferiority to External Beam & Brachy for 2-year survival; Equivalence for Toxicity/QoL

Analysis: Stratify on Stage and Node Involvement


Data: Standardized; Tissues (Genetics; HPV type); Blood (Nutritional Status)

Sites: Brazil and Mexico; Minimum requirement---CT image of Abdomen and Pelvis and Chest

x-ray

In close or positive margins, what is the role for a brachytherapy boost after hysterectomy?

- 230 patients negative margins
 - LR 10% to 0% with RT
- 46 patients close margins (< 1 cm)
 - LR 17% to 0% with RT
- 8 patients with positive margins
 - LR 50% to 25% with RT
- Significant factors on univariate for RFS
 - Depth of invasion
 - Margin status and margin width
 - Tumor Size
 - LVSI

Table 5. Retrospective stud	lies assessing natients wit	n positive/close margins	treated with RT
rable 5. Red objective state	ites assessing patients with	i positive/ciose maigms	treated wrait ivi

	n RT Relapse rate (%) Margins			
Establish of all (22)	5.1	ED + MD		
Estape et al. (33)	51	EB + VB	12.5	Close (≤5 mm) paravaginal
Hong <i>et al.</i> (34)	29	EB + VB*	25	Close (<3 mm) and positive [†]
Kim <i>et al.</i> (35)	11	$VB \pm EB$	55	Close (<1 cm) and positive [†]
Russell et al. (29)	16	EB	36	Close (not defined)
Hogan <i>et al</i> . (30)	6	EB	33	Positive
Snijders-Keilholz <i>et al.</i> (32)	17	EB + VB	6	Positive
Snijders-Keilholz <i>et al.</i> (32)	6	EB + VB	Not given	Close (<5 mm)