## GCIG Translational Research Committee

Thursday 30<sup>th</sup> May 2013





Iain McNeish Professor of Gynae Oncology Institute of Cancer Sciences University of Glasgow, UK

## Agenda

- Patient derived xenografts Clare Scott (ANZGOG)
- Tumour heterogeneity Jessica McAlpine (NCIC)
- Digital droplet PCR Paul Speiser (AGO-Austria)
- Co-ordination of complex samples McNeish
- Peace and Harmony Natalie LeFur



Platinum response and molecular correlates of human high-grade serous ovarian cancer patient-derived xenografts (PDXs)







AOCS australian ovarian cancer study



#### **Clare Scott, MD PhD**

Royal Melbourne and Royal Women's Hospitals and Walter Eliza Hall Institute of Medical Research



Sir Edward Dunlop fellowship

## Characterisation of Ovarian Cancer patient-derived xenografts (PDX)



#### Mastery of Disease Through Discovery

#### **HG-SOC PDX: pre-clinical utility**

- Transplantatation success rate 83%
- Mutations detected in PDX:

2x BRCA1; 3x BRCA2; TP53 present in all

• *In vivo* cisplatin response defined for HG-SOC PDX as platinum sensitive, resistant or refractory

- largely consistent with patient outcome.

 Two of three PDX containing DNA repair gene mutations were platinum sensitive whereas overexpression of oncogenes was observed in platinum resistant/refractory PDX. Intratumoral heterogeneity: the evolutionary dynamics of high-grade serous ovarian cancer and new directions in other gynaecologic cancers













### **Regional diversity of mutational profiles**





• 52% +/- 31% of mutations present in all samples

TP53

- 91% in primary-recurrence comparison
- 10% in most diverse case
- TP53 always in all samples
- Driver mutations PIK3CA, CTNNB1 not present in all samples



# Conclusions: spatial sampling of HGS ovarian cancers

- A single sample will only partially represent the mutational landscape of a tumour
- Histologically distinct tumours in the same individual can evolve from a common ancestral lineage
- Mutational and genome architecture profiles are not always compatible – different tumours evolve in different ways

Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling Bashashati et al, J Pathology, In Press

## Digital droplet PCR for sensitive detection of ovarian cancer from lavage of the uterine cavity

Gynecologic Cancer Intergroup GCIG 2013 Spring Meeting Chicago, IL May 30<sup>th</sup>

#### **Paul Speiser**

Medical University Vienna Department Gynecologic Oncology Comprehensive Cancer Center Vienna

#### **Targeting STICS – Uterine lavage**





#### Digital droplet PCR (ddPCR)

- 20,000 droplets per sample
- 2 colour optical detection using FAM/VIC labeled probes
- Absolute quantification of target molecules
- Single molecule sensitivity





## Co-ordinating complex translational sample collection across multiple sites and multiple countries





Iain McNeish Professor of Gynae Oncology Institute of Cancer Sciences University of Glasgow, UK

## Sample Collection Challenges

1. Cost

NiCCC sample collection alone = £91,000 24 tumour biopsies = £20,000 Courier costs = £47,000

2. Infrastructure

-80 freezers and centrifuges

3. Quality

Plasma processing across 8 countries...

4. Getting hold of the archival samples

## Harmonisation committee input

- 1. GCIG standards for translational research
- 2. Ownership of samples after completion of clinical trial
- 3. The boring bit Standard Operating Procedures