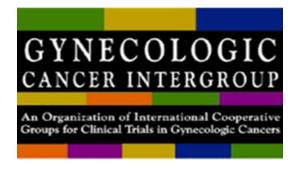


*UCL

Locally Advanced Cervical Cancer & INTERLACE trial

Dr Mary McCormack
Consultant Clinical Oncologist
University College Hospital
London,UK

VOLUME 26 - NUMBER 35 - DECEMBER 10 2008


JOURNAL OF CLINICAL ONCOLOGY

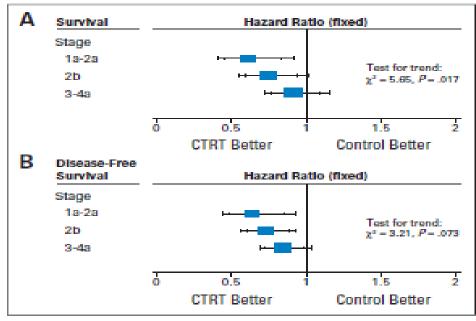
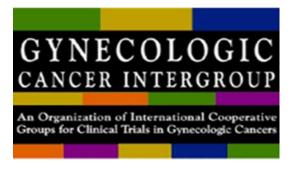
REVIEW ARTICLE

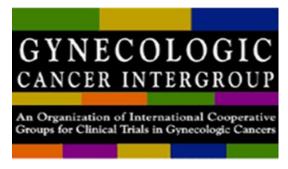
Reducing Uncertainties About the Effects of Chemoradiotherapy for Cervical Cancer: A Systematic Review and Meta-Analysis of Individual Patient Data From 18 Randomized Trials

Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration

MRC Clinical Trials Group London UK

Meta-analysis


Fig 2. (A) Survival and (B) disease-free survival by tumor stage (main group of 13 trials only). CTRT, chemoradiotherapy.

- 18 trials from 11 countries/analysis limited to 13 trials
- Confirmed benefit of CRT- smaller effect
- Overall HR survival 0.81 / HR DFS 0.78
- Suggestion that greatest benefit with earlier stage (7-10% I/II vs 3% III/IV)
- Significant benefits with non-platinum agents
- Suggestion that adjuvant chemo may improve outcome further

Beyond ChemoRadiation

- A significant proportion of women with LACC still die from their disease
- Technical advances in imaging and in RT planning facilitated a move towards increased precision in brachytherapy practice
- More accurate definition of target volume & dose escalation
- Dual aim-improve LC & reduce toxicity to OAR
- Colleagues in Vienna, Denmark and France led the way in developing IGABT

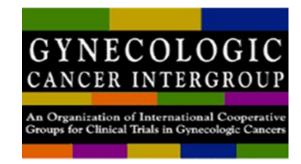
Radiotherapy and Oncology 120 (2016) 428-433

Contents lists available at ScienceDirect

Radiotherapy and Oncology

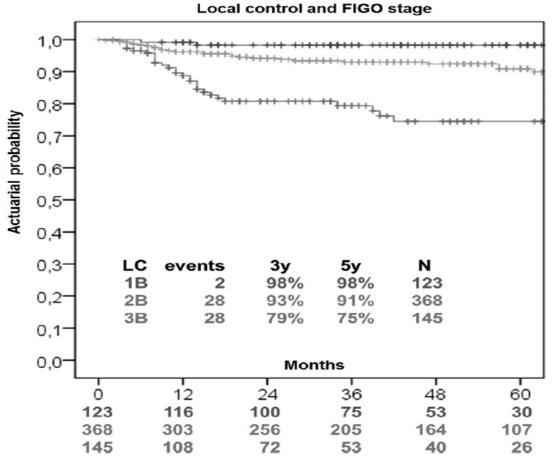
journal homepage: www.thegreenjournal.com

Image guided brachytherapy in cervical cancer

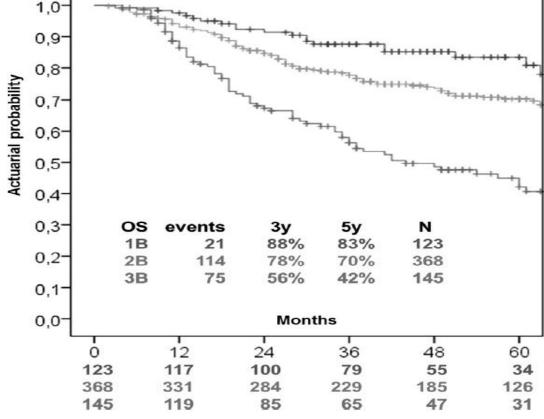

Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study



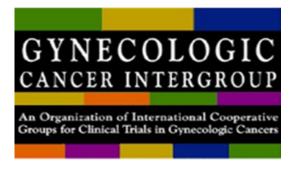
RetroEMBRACE

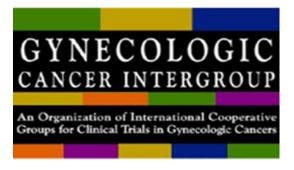

Table 1
Patient and tumour characteristics.

Variable		No of patients $n/\%$
Median age (years)	53 (23-91)	731
FIGO stage	1B	123 (16.8%)
	2A	42 (5.6%)
	2B	368 (50.3%)
	3A	23 (3.1%)
	3B	145 (19.8%)
	4A	23 (3.1%)
Histology	Squamous cell Ca	591 (84.7%)
	Adenocarcinoma	9.3%
	Others	6%
Median tumour width at diagnosis	Clinically: 50 mm	MRT: 46 mm
Nodal status	N+	40%
	N-	60%
CHT	Yes: 566 (76.5%)	No: 165 (22.5%)



RetroEMBRACE- outcome


Overall survival and FIGO stage


Conclusions from IGABT

- Excellent local & pelvic control even in advanced disease
- Data from single institutions with the most experience confirm reduction in morbidity over historical controls
- BUT ? real impact on survival- better than historical controls treated with much lower RT doses
- However significant number of patients still die from metastatic disease---so need for additional therapy

Is there a role for additional chemotherapy in LACC?

Adjuvant or Induction?

Intensification of CRT & adjuvant chemo

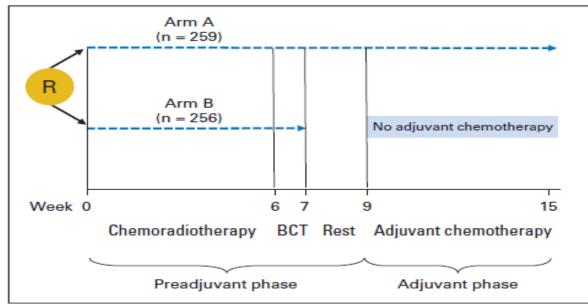
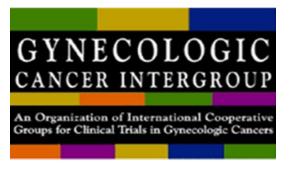
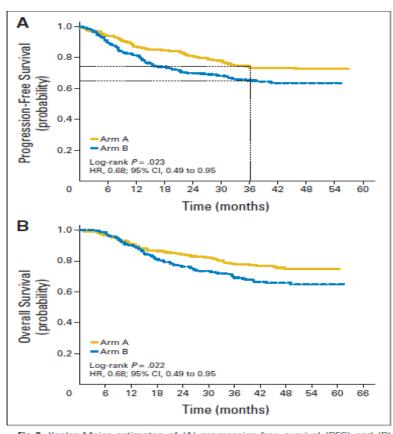
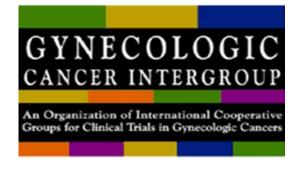
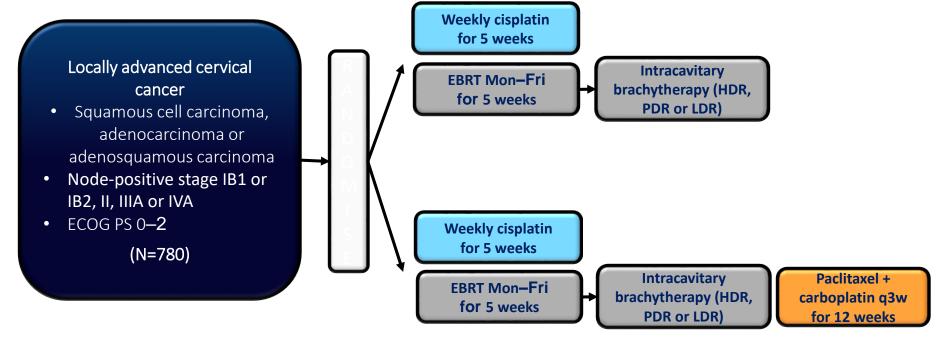



Fig 2. Study treatment schedule. Arm A treatment consisted of gemcitabine plus cisplatin chemoradiotherapy for 6 weeks. Arm B treatment consisted of cisplatin chemoradiotherapy for 6 weeks. All patients received 28 fractions of 1.8 Gy per day, 5 days per week, over the 6 weeks of chemoradiotherapy. After chemoradiotherapy, all patients were scheduled to receive 30 to 35 Gy of brachytherapy (BCT) in week 7. After BCT and a subsequent 2-week rest period, patients randomly assigned to arm A received adjuvant chemotherapy (cisplatin 50 mg/m² on day 1 plus gemcitabine 1,000 mg/m² on days 1 and 8, every 3 weeks for two cycles). R, random assignment.

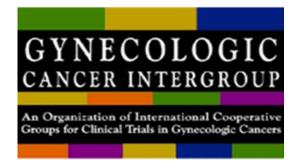
- 515 pts
- 61% IIB / 37% IIIB
- 93% non adenoca
- Median age 45 yrs
- Median size 6cm

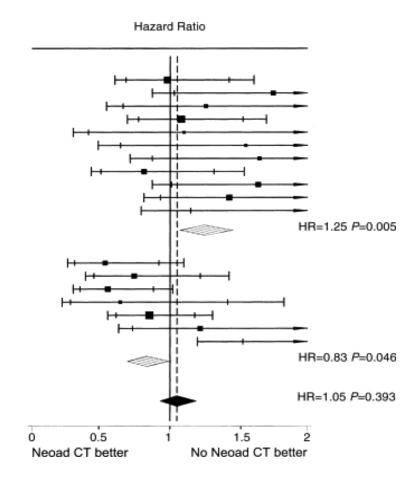



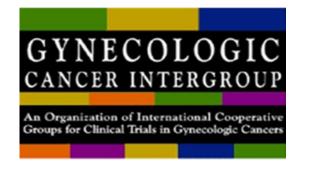

Fig 3. Kaplan-Meier estimates of (A) progression-free survival (PFS) and (B) overall survival for patients who were randomly assigned to arm A or arm B. PFS at 3 years is shown by the dotted black lines and was 74.4% for arm A and 65.0% for arm B (P = .029). HR. hazard ratio.

Dueñas-González et al

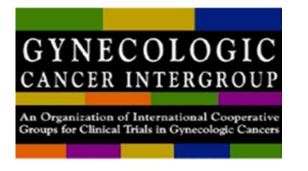
- Cisplatin 40mg/m2, Gem 125mg/m2 wx6
- Adjuvant therapy-C 50mg/2 D1
 & G 1g/m2 d1,8 q21
- Significant toxicity- 72%G3/4 haem Arm A vs 24% CRT
- 9% improvement in PFS 3 years
 65% (B) to 74% (A)

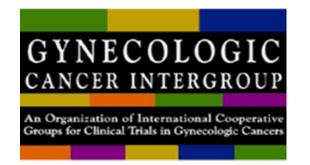

OUTBACK (GOG 0274/RTOG 1174/ANZGOG 0902): Trial design


NACT Chemotherapy-background


- Several trials NACT followed by radical radiotherapy vs radiotherapy alone
- Conflicting results
- Meta-analysis of individual patient data (Tierney et al EJC 2003);
 - -18 RCT
 - -2074 patients (neoadj chemo/RT vs RT alone)

Meta- analysis (Tierney et al, 2003 E J Cancer)

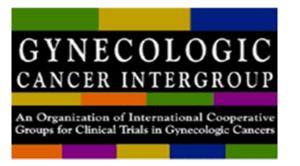

	Neoad CT	No Neoad (CT O-E	Variance
Trial	(no. events/	no. entered)	
>14 day cycles				
Chauvergne, 19	93 57/92	54/90	-0.47	27.66
Souhami, 1991	29/48	31/55	7.64	13.64
Tattersall, 1992	20/34	18/37	2.17	
Herod, 2001	68/89	62/88	2.60	32.39
Cardenas, 1991	7/13	9/18	0.37	3.84
Cardenas, 1993	12/14	8/16	2.16	4.91
Chiara, 1994	22/32	16/32	4.68	9.33
Sundfor, 1996	31/48	35/48	-3.41	16.40
CCSG AOCOA	38/129	28/131	8.08	16.31
Kumar, 1998	49/88	34/85	7.43	20.73
LGOG	9/15	2/12	3.61	2.73
Sub-total	342/602	297/612	34.85	157.36
≤14 day cycles				
Sardi, 1997	19/104	32/106	-7.97	12.69
Sardi, 1998	30/73	33/74	-4.61	15.56
Sardi, 1996	34/54	41/54	-10.61	17.89
PMB	9/16	15/19	-2.68	5.94
Symonds, 2000	68/105	76/110	-5.86	35.84
Leborgne, 1997	32/48	28/49	2.98	14.94
MRC CeCa	19/24	9/24	7.86	6.64
Sub-total	211/424	234/436	-20.89	109.48
Total	553/1026	531/1048	13.96	266.85


Optimising this approach

- Reduce cycle length --- weekly treatment
- Incorporate taxane and retain platinum
- Eliminate delay between chemotherapy and definitive CRT
- Balance need for systemic treatment with tolerability and ease of delivery without significantly delaying definitive treatment.

Why weekly induction treatment?

- Dose dense schedules- may
 - reduce tumour volume
 - control micrometastatic disease
 - overcome accelerated repopulation
 - impact on survival?
- Greater dose intensity (v q 3-weekly)
- Well tolerated in other patient populations



British Journal of Cancer (2013) 108, 2464–2469 | doi: 10.1038/bjc.2013.230

Keywords: neoadjuvant chemotherapy; locally advanced; cervical cancer

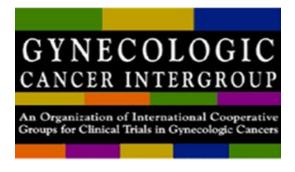
A phase II study of weekly neoadjuvant chemotherapy followed by radical chemoradiation for locally advanced cervical cancer

M McCormack*,1, L Kadalayil², A Hackshaw², M A Hall-Craggs¹, R P Symonds³, V Warwick², H Simonds¹, I Fernando⁴, M Hammond², L James², A Feeney² and J A Ledermann²

CX II Study- phase 2 single arm feasibility study

Weekly Paclitaxel (80mg/m²)
 & Weeks 1-6
 Carboplatin (AUC2)

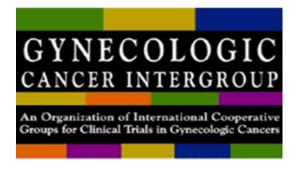
 Followed by radical ChemoRT (cisplatin 40 mg/m²)


Weeks 7-13

CX2 – Demographics & Compliance

Table 1. Baseline characteristics				
	N (%)			
Cell type				
Adenocarcinoma	10 (22)			
Adenosquamous	3 (7)			
Squamous	33 (72)			
Patients with positive para-aortic nodes	5 (11)			
FIGO stage				
lb2	5 (11)			
Ilb	23 (50)			
Illa	2 (4)			
IIIb	13 (28)			
IVa	3 (7)			

- 80% completed all 6 cycles NACT
- 78% completed 4-6 cycles cisplatin
- 98% (45/46) had radiotherapy
- 4/5 pts with PALN received EFRT


Toxicity

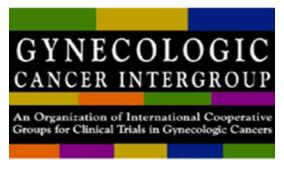
Toxicity	NACT	CRT
G3/4 Haematol	11%	45%
G3/4 Non-Haem	11%	21%

• CX2 : G3 neutropenia during CRT 35%

Rose et al 1999 :
 46% (C/5FU/H) ,23% (C)

Duenas-Gonzalez 2011
 51%(G/C), 6% (C)

CX2- Response assessed by MRI


Table 3. Tumour response using RECIST criteria					
	Post-neoadjuvant N =46, N (%)	12 Weeks after all treatment N = 46, N (%)			
Complete response	2 (4)	29 (63)			
Partial response	30 (65)	10 (22)			
Stable disease	10 (22)	2 (4)			
Progressive disease	2 (4)	2 (4)			
Assessment not done	2 (4) ^a	3 (7) ^b			

^aOne patient died after cycle 1, and the other had an serious adverse event after starting treatment so stopped early.

70% RR to NACT at end wk6

• 85% RR at 12/52 post CRT

^bThe same two patients as above and a third patient due to progressive disease and clinician's choice.

Progression free and Overall survival

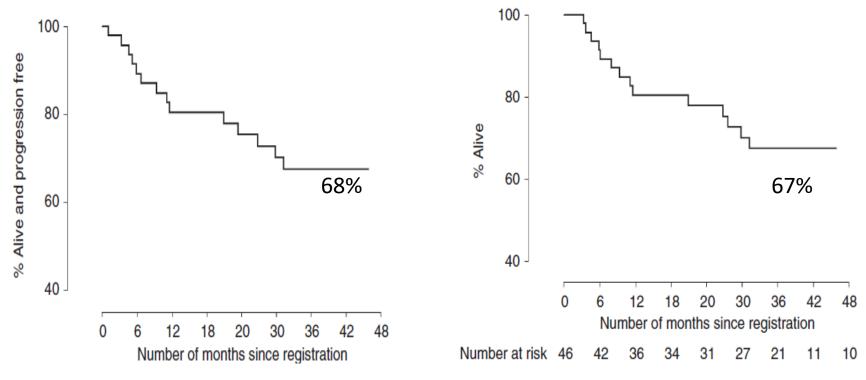


Figure 1. Kaplan–Meier plots for progression-free survival (PFS; upper) and overall survival (OS; lower) for the 46 patients in the study. The PFS and OS rates are the same for 3 and 5 years (68% and 67%) as there were no PFS or OS events between 3 and 5 years.

INTERLACE

Randomise

Carboplatin AUC2 & Paclitaxel 80mg/m²
Weeks 1-6

Weeks 7 – 13 Standard CRT **Standard CRT**

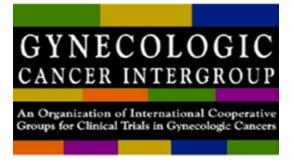
Standard CRT: 40—50.4Gy in 20-28 fractions plus Intracavitary brachytherapy to give total EQD2 dose of 78-86Gy to point A/volume in </=50d Weekly cisplatin 40mg/m² x 5 weeks

Follow-up 3 monthly for 2 years; 6 monthly for 3 years

INTERLACE

Inclusion criteria

- FIGO lb2- Iva
- SCC, Adeno, Adenosq
- Adequate renal/ liver/BM
- Documented HIV neg (high risk countries)


Exclusion criteria

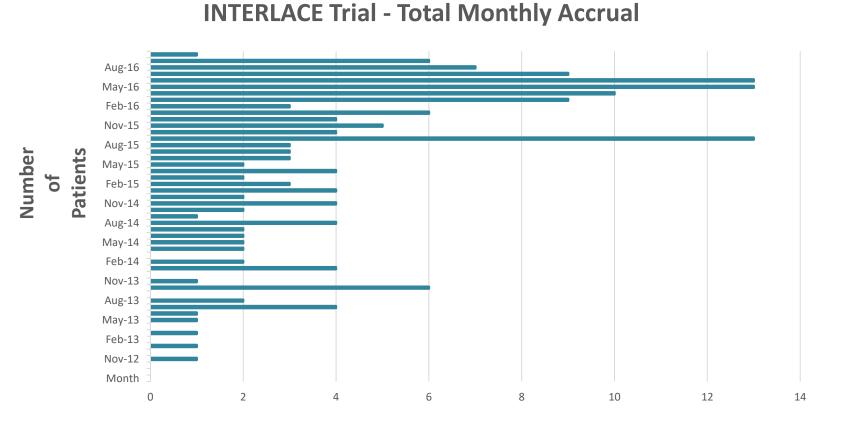
- Involvement of lower 1/3 vagina
- Previous pelvic malignancy
- History Crohn's / UC
- Hydronephrosis-unless relieved by stenting/ nephrostomy except if non functioning kidney
- Enlarged lymph nodes above aortic bifurcation

Stratification

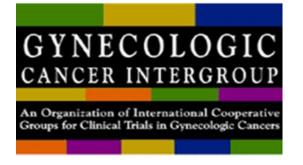

- FIGO stage
- Node status positive / negative
- Squamous v non squamous histology
- Tumour Volume
- Institution
- IMRT V no IMRT

Statistics

Sample size of 730 (now revised to 630pts) provide 80% power to detect a 10% increase in 5 year OS (60 to 70%) (HR 0.70, 2 sided test at 5% sig level)



INTERLACE



INTERLACE

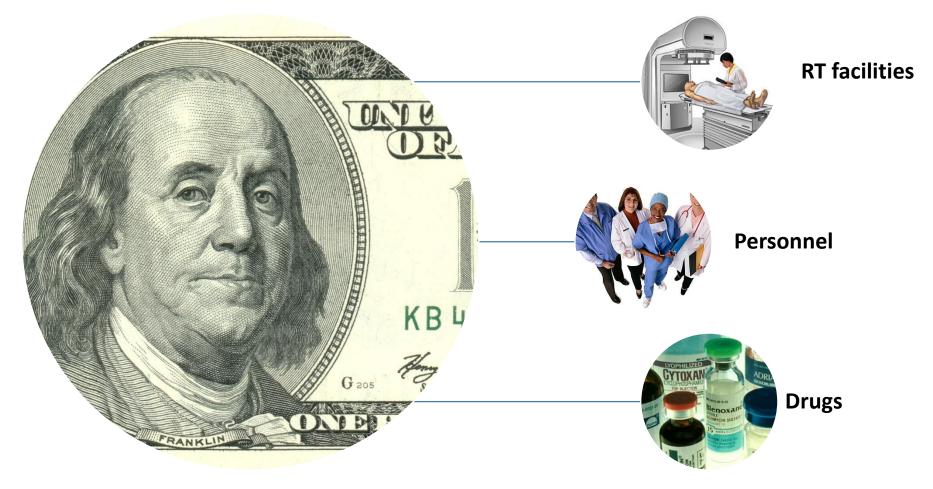
Current status

Target recruitment –630

Accrual to date (UK and Mexico) –182

Number of sites open - 30

- GICOM (Mexico) –24 patients recruited since opening in Feb 2016
- MaNGO (Italy) 5 sites in setup / Milan to open
 Spring



Challenges at home

- Cervical cancer rare in UK & western Europe
- Expectations of target population are perhaps lower than those of women with say breast cancer
- Extension of overall treatment time impacts on income/ travel costs
- Implementation of RTQA program
- Balancing competing priorities- standard of care v clinical trial

GYNECOLOGIC CANCER INTERGROUP An Organization of International Cooperative Groups for Clinical Trials in Gynecologic Cancers

Obstacles abroad

How to overcome them----

Greater cooperation between industry & academia


Access to large numbers of patients in real world setting

Annual donation to a charitable trust

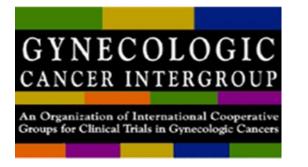
Basic infrastructure & training in conduct of clinical trials

Income from commercial studies to fund other personnel

Funding on a competitive basis for locally appropriate trials/projects

Contacts:

Chief Investigator – Dr Mary McCormack mary.mccormack@uclh.nhs.uk


RTQA – Yatman Tsang <u>yatmantsang@nhs.net</u>

General Enquiries – ctc.interlace@ucl.ac.uk

Thank You!

