Gynecologic Cancer InterGroup Cervix Cancer Research Network

Cervix Cancer Education Symposium, February 2018

Locally advanced disease & challenges in management

Carien Creutzberg

Radiation Oncology, Leiden University Medical Center, The Netherlands

Gynecologic Cancer InterGroup Cervix Cancer Research Network

Cervix Cancer Education Symposium, February 2018

No disclosures

- Heterogenous group: Stage IB2/IIB to IVA disease
- Surgery, chemotherapy, radiation therapy, brachytherapy: treatment based on data vs availability vs tradition
- Challenges in staging and treatment: FIGO stage vs nodal involvement
- Strong improvements in techniques and outcomes
- Toxicity and quality of life impairment in relatively young women

Figure 1. Staging of uterine cervix carcinoma according to FIGO⁽³⁾.

Risk of lymph node metastases

FIGO	Patients (n)		Lymphnoda	al involven	nent		100							
stage		Positive		Negative			100]						No (N=3364)	
		N	%	N	%	ing	80 -							
Total	5173	1161	22.4	4012	77.6	urvi.							Yes (N=953)	
Ia1	356	14	3.9	342	96.1	N N	60-						Not evaluated (N=745	58)
Ia2	238	23	9.7	215	90.3	tio	10							
Ib1	2687	460	17.1	2227	82.9	lod	40]							
Ib2	685	209	30.5	476	69.5	Pro	20							
IIa	486	140	28.8	346	71.2		20							
IIb	491	185	37.7	306	62.3		0							
IIIa	29	14	48.3	15	51.7		0	1	2		3	4	5	
IIIb	117	71	60.7	46	39.3				Ye	ars	after	r diagr	nosis	
IVa	28	16	57.1	12	42.9									
IVb	24	22	91.7	2	8.3									
Missing	32	7	21.9	25	78.1									

Quinn et al. 26th FIGO Annual Report 2006

Stage and lymph node involvement

Kidd et al. JCO 2010

Stage and lymph node involvement

MRI

PET-CT

Stage and lymph node involvement

MRI

PET-CT

Primary surgery vs radiotherapy

343 women, stage IB-IIA cervical cancer

	Surgery (n=17	/0)	Radiotherapy (n=167)			
	≪4 cm	>4 cm	≪4 cm	>4 cm 54		
Number of patients	115	55	113			
Mean (SD) age in years	51.8 (11.3)	46.1 (10.1)	55.2 (10.9)	50.0 (9.8)		
FIGO stage						
lb	107 (93%)	47 (85%)	99 (88%)	45 (83%)		
lla	8 (7%)	8 (15%)	14 (12%)	9 (17%)		
Positive lymphangiography	12 (10%)	12 (22%)	9 (8%)	13 (24%)		
Histological type						
Squamous	94 (82%)	44 (80%)	97 (86%)	45 (83%)		
Adenocarcinoma	18 (16%)	8 (15%)	13 (11%)	7 (13%)		
Small cells	3 (2%)	3 (5%)	3 (3%)	2 (4%)		
Postoperative						
radiotherapy	54%	84%				
Morbidity G2-3	30%	25%	12%	11%		

Time since treatment (months)

Primary radiotherapy with chemotherapy

Trial ID	even	ts pts.	even	ts pts.	0-E	Variance	Hazard Ratio (Fixed)
Trials of Chemoradiation v	radiot	herapy					
(a) Platinum-based CTRT							
Onishi44 (CDDP or CDBCA)	16	26	15	23	1.52	7.59	F-+
Pearcey ⁴³ (CDDP)	53	130	60	129	-5.00	28.20	F+
GOG01236 (CDDP)	49	185	69	189	-12.90	29.38	►
Chen ²³ (a) (CDDP FU VCR)	8	30	8	30	0.21	4.00	F
Chen ²³ (b) (CDDP FU VCR)	6	30	7	30	-0.45	3.25	⊢ ₊
Pras (CDBCA FU)	17	28	16	26	-0.47	8.15	· · · · · · · · · · · · · · · · · · ·
GOG016526 (a) (CDDP)	8	26	12	24	-3.03	4.92	···
Cikaric47 (CDDP)	37	100	48	100	-8.02	21.12	
Leborgne (CDDP FU)	75	170	85	170	-3.07	39.91	
Gariapagaoglu ⁴⁸ (CDDP)	9	22	8	22	0.70	4.23	⊢ ₊ _
Lal ⁵⁰ (CDDP)	14	94	12	86	0.62	6.49	⊢ ⊢ – – – – – – – – – – – – – – – – – – –
Sub-total	292	841	340	829	-29.89	157.23	-
(b) Non-platinum-based CT	RT						HR = 0.83, <i>F</i>
Thomas ²⁴ (a) (FU)	24	57	32	58	-5.16	13.83	·····
Thomas ²⁴ (b) (FU)	26	58	25	60	0.71	12.74	
Lorvidhaya ²⁵ (a) (MMC FU)	40	233	59	242	-12.52	24.57	⊢ +−−− ■ −−−−+−+
Lorvidhaya ²⁵ (b) (MMC FU)	54	230	49	221	0.31	25.67	·····
Roberts ⁴⁹ (MMC)	25	124	39	124	-8.39	15.92	··
GOG016526 (b) (FU)	11	27	12	24	-0.82	5.55	H
Sub-total	180	729	216	729	-25.87	98.28	HR = 0.77, F
Total	472	1,570	544	1,534	-54.56	251.54	HR = 0.81, F
Trials of CTRT + adjuvant ch	nemot	herapy	v radi	otherar	v		
SWOG87978,46 (CDDP FU)	28	135	54	133	-15.61	20.36	⊢−−

Control

Kantardzic ⁴⁵ (CDDP BLM)	15	40	25	40	-7.74	9.74
Sub-total	43	175	79	173	-23.35	30.10

CTRT

Primary chemoradiation and brachytherapy

- External beam radiotherapy combined with weekly Cisplatin 40 mg/m², 5-6 cycles
- CT-based planning, 45-46 Gy in 1.8-2 Gy fractions
- 3-dimensional conformal treatment planning versus intensity modulated and volumetric arc techniques
- Simultaneous integrated boost to nodal disease (55-60 Gy)
- Image guided adaptive brachytherapy

Better imaging, better techniques

3D CRT and IMRT

NRG – RTOG Time-C trial presented at ASTRO 2016

- Randomised trial of IMRT vs 4-field pelvic radiotherapy
- IMRT reduces acute GI and GU toxicity at 5 wks
- IMRT improved QOL with regard to physical functioning

Pro-CTCAE Results

EPIC Bowel Score

Challenges

Tumor regression during treatment

Challenges

Organ motion depending on bladder and rectum filling

- Plan-of-the-day treatment schedules based on bladder filling - current
- Adaptive treatment by replanning (daily vs weekly) future

Treatment results

Results: local control and survival

RetroEMBRACE analysis, N=731

- EBRT plus cisplatin
- IMRT plus simultaneous boost 55-60 Gy
- Image guided brachytherapy

Locoregional recurrence **Overall Survival** Local control at 3-5 year 10 10 98%-98% (2 ev IB1-2 IGBT-group 0,8 0,8 Cummulative recurrence Cummulative Survival IIB 93%-91% 0,6 0.6 IIIB 79%-75% CBT-group 0.4 CBT-group 0,2 0.2 **Overall and cancer-spec** IGBT-group 0.07 0.0 log-rank: 0.000 log-rank: 0.000 74%-65% and 79-73% at no. at risk 12 24 36 48 60 (months) 60 (months) no, at risk 0 12 24 36 Conventional BT 27 17 37 19 29 22 21 19 Conventional BT 21 13 Image-guided BT 58 78 58 25 47 28 16 Image-guided BT

Fig. 1. Overall survival and pelvic recurrence rates by treatment group (CBT vs. IGBT).

Sturdza et al. Radiotherapy Oncology 2016; Rijkmans et al, Gynecol Oncol 2014

Primary chemoradiation vs neoadjuvant chemo?

Benedetti-Panici JCO 2002; Kenter, IGCS 2016; Gupta et al, ESMO 2017

- Nodal involvement: surgery or radiotherapy boost?
- Para-aortic involvement: surgical sampling or PET-CT based? Risk based on pelvic nodal involvement?
- Control of distant disease ongoing trials
- Expensive and complicated techniques PET-CT, MRI, IMRT, VMAT, RapidArc: are they really needed?
- MRI-based versus ultrasound based brachytherapy

PET-CT detection of lymph node metastases

No. of					Ly	ymph No	ode Ty	/pe					
Total		Lymph Nodes		Pelvic		Para- Aortic		Sup clavio	ora- cular				
Stage	Patients	No.	%	No.	%	No.	%	No.	%				
IA1	1	1	100	0		0		0					
IA2	11	10	91	1	9	Size	Size of Tumor and Co			ol Achieved with 6000	nads Alone and		
IB1	146	118	81	28	19	Size of Tunior and Co		with	Cheme-Dadiation	Taus Aione and			
IB2	81	40	49	41	51				with				
IIA	14	7	50	7	50						Control of		
IIB	161	74	46	87	54			Dose F	Required	Control of	Tumor Achieved		
IIIA	4	2	50	2	50	Size of	f	to A	chieve	Tumor Achieved	with Cisplatin		
IIIB	111	36	32	75	68	Tumor	- [90%	Control	with 6000 rads	and 6000 rads		
IVA	11	5	45	6	55								
IVB	20	3	15	17	85	2 cm		6000	RADS (90%	94%		
All	560	189	34	264	47	2–4 cn	1	7000) RADS	75%	85%		
-						4–6 cm	1	8000) RADS	65%	80%		
						6 ст		10,000	RADS (55%	74%		

 Table 1. Frequency and Level of Lymph Node Metastasis Observed on FDG-PET by FIGO Stage of Cervical Cancer

Kidd et al. J Clin Oncol 2010, Kupets et al. Gyn Onc 2002

Nodal debulking?

- Definitive radiotherapy combined with weekly Cisplatin
- Extended field IMRT + simultaneous integrated boost
- 40 patients positive pelvic nodes, elective PAO RT, elective dose 45 Gy
- 21 patients positive pelvic and PAO nodes, PAO SIB boost up to 55 Gy (54-59.4)

Vargo et al. IJROBP 2014, Sturdza et al Radiother Oncol 2016

Nodal debulking?

- Para-aortic lymphadenectomy to tailor radiation field versus
- Risk stratification for elective radiotherapy of para-aortic nodes
- Prediction models (Tumor size on T2 MRI; PET-CT node status)

Risk Group LN	Definition	EBRT lymph node regions
Low Risk (LR LN)	Tumour size ≤4cm AND stage IA/IB1/IIA1 AND N0 AND squamous cell carcinoma AND no uterine invasion	"Small Pelvis" internal iliac external iliac obturator presacral
Intermediate Risk (IR LN)	Not low risk No high risk features	 "Large Pelvis" Nodes included in "Small Pelvis" and common iliac region (including the aortic bifurcation). In addition: inguinal in case of distal vaginal involvement. Mesorectal space in case of mesorectal nodes and advanced local disease
High Risk (HR LN)	 Based on nodal pathology ≥ 1 pathologic node at common iliac or above OR ≥ 3 pathologic nodes 	"Large Pelvis + Para-aortic" Nodes included in "Large Pelvis" and para-aortic region with the upper border of CTV minimum at the level of renal veins (usually incl. L2), and at least 3 cm cranial of the highest pathological node in case of para-aortic nodes].

Target definition using rectal ultrasound

Good correlation between MRI and ultrasound

Schmid et al, Strahlenther Onkol 2013, Nesvacil et al, Brachytherapy 2016

Target definition: MRI vs rectal ultrasound plus CT

Can we omit brachytherapy?

SEER analysis of 7359 cases with stage IB2-IVA cervical cancer Survival by brachytherapy use for matched cohorts between 2000 and 2009

- Cause-specific survival (64 vs 51%) and overall survival (58 vs 46%)
- Brachytherapy was independently associated with CSS and OS

Han et al, IJROBP 2013

Chemoradiation as effective for stage IIIB?

Phase 3 randomised trial of cisplatin chemoradiation vs radiation therapy alone in FIGO stage IIIB squamous cell carcinoma of the cervix

- EBRT 50 Gy plus brachytherapy (HDR 3x Gy or LDR 25-30 Gy point A)
- Weekly cisplatin for at least 5 cycles
- >90% treatment compliance
- median follow-up: 88 months
- 5-year PFS 52 vs 44%; 5-yr OS 54 vs 46% (p=0.03), 8% absolute survival gain

Mahanshetty et al, ESGO 2017

Trials of adjuvant chemotherapy

Accrual completed (n=900)

Ongoing (n > 265 / 630)

Interlace: PI Mary McCormack (NCRI UK)

Long term toxicities and QOL

- Relationship of smoking, habitus, comorbidities to risk of side effects
 - Eifel et al: heavy smoking: 3-fold higher risk of bowel toxicity and 2-fold higher risk of any complications
- Impact on physical, social, role and sexual functioning
- Rehabilitation programme

Eifel et al, Jco 2002, Kirchheiner et al, IJROBP 2016; Bakker et al, Supp Care Cancer 2016

Conclusions

- Primary chemoradiation with brachytherapy is standard of care
- Many treatment and patient related challenges
- Avoid triple-modality treatment to reduce toxicities
- Newer image-based techniques have significantly improved outcomes: lymph node boosts, image-guided brachytherapy
- Excellent pelvic control; reducing risk of distant relapse essential for further improving OS
- 3D-CRT effective and safe treatment
- Ultrasound-based brachytherapy may be equivalent
- Survivorship care essential for QOL