

Gynecologic Cancer InterGroup Cervix Cancer Research Network

Hypofractionation for Cervical Cancer Anuja Jhingran, MD

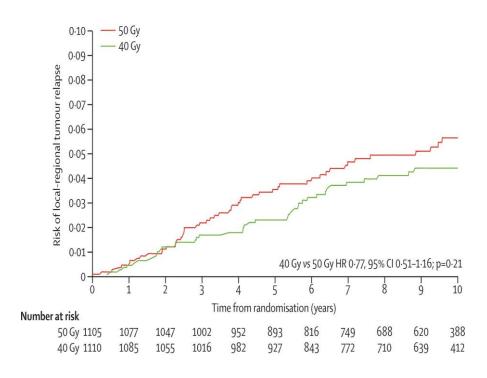
Cervix Cancer Education Symposium, January 2019

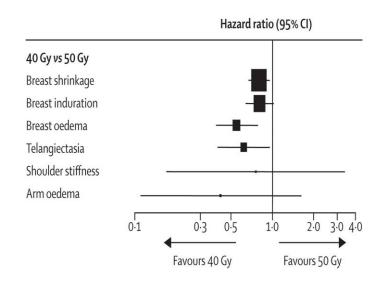
Definitive Treatment: Hypofractionation EBRT

- 45-50.4 Gy, Is this optimal?
- Dose per fraction: 1.8-2.0 Gy?
- Guiding principle: Mitigating late toxicity

Advantages and Concerns

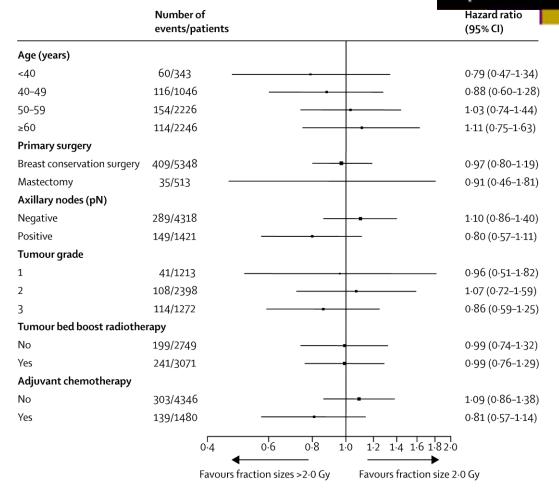
- Shortening fractionation raises concerns
 - Late toxicity in bowel = esp with long term survival
 - Conventional fractionation might be better at reducing local recurrences – especially nodal
- Inherent advantages
 - More convenient
 - Less expensive
 - With intact cervix could shorten treatment time


Precedent


- Breast
 - START trials, Canadian hypofractionation
- Rectal
 - Swedish Rectal Trial, Polish Rectal Trial, EORTC,
 Wash U
- Prostate
 - Extreme hypofractionation
- Pancreas
- SBRT, SRS

Hypofractionated WBI

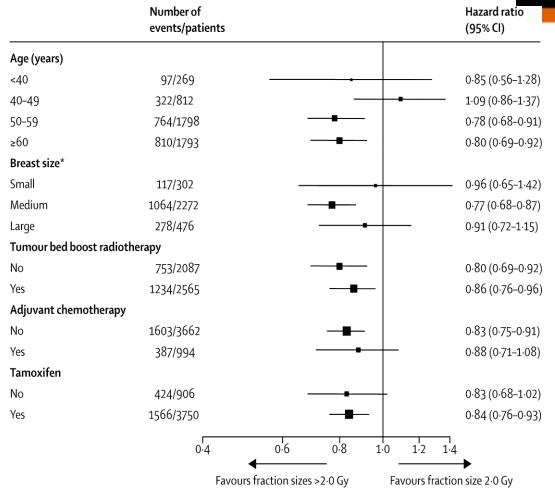
START B



Gynecologic Cancer InterGroup Cervix Cancer Research Network

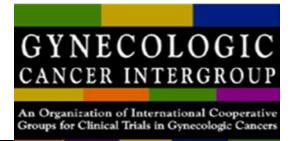
Meta-analysis for local-regional relapse

An Organization of International Cooperative Groups for Clinical Trials in Gynecologic Cancers



Gynecologic Cancer InterGroup Cervix Cancer Research Network

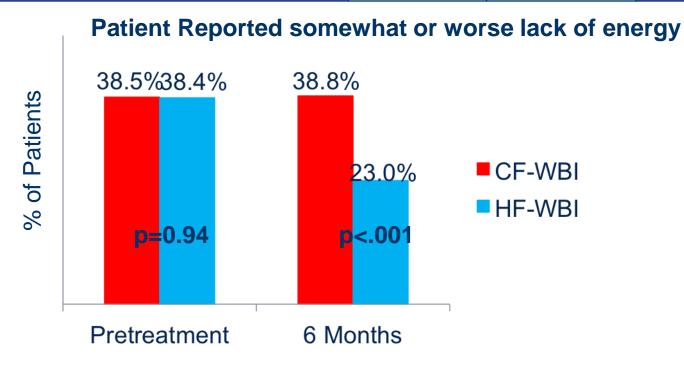
Meta-analysis for complications


An Organization of International Cooperative Groups for Clinical Trials in Gynecologic Cancers

Cervix Cancer Education Symposium, January 2019

Haviland et al, Lancet Oncol 14:1086-94, 2013

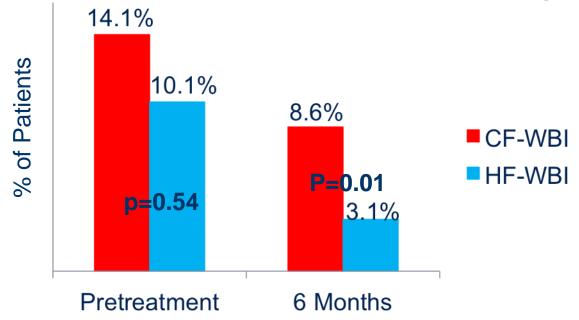
Gynecologic Cancer InterGroup Cervix Cancer Research Network MD Anderson trial


	Dose to Whole Breast/ # Fractions	Dose to Tumor Bed Boost/ #Fractions	Total Days of RT
CF- WBI	50G MD Anderson trial /25fx	10Gy/5fx Margin ≥2mm 14Gy/7fx Margin <2mm	30-32
HF- WBI	42.56Gy/16fx	10Gy/4fx Margin ≥2mm 12.5Gy/5fx Margin <2mm	20-21

Cervix Cancer Education Symposium, January 2019

6 Month Patient FACT-B Scores

	CF-WBI	HF-WBI	p-value
Mean Physical Wellbeing Score	24.7	25.4	0.07
Q1. Lack of energy: somewhat or	38.8%	23.0%	<0.001
worse			


Shaitelman et al., JAMA Oncology 94:338-48, 2016

6 Month Patient FACT-B Scores

	CF-WBI	HF-WBI	p-value
Mean Physical Wellbeing Score	24.7	25.4	0.07
Q3. Somewhat or worse trouble meeting family needs	38.8%	23.0%	<0.001

Patient Reported somewhat or worse trouble meeting family needs

Shaitelman et al., JAMA Oncology 94:338-48, 2016

February 2015

Summary

- For women who need whole breast irradiation without addition of a third field to cover the regional nodal basins, hypofractionated-whole breast irradiation should be the preferred standard of care
 - Evidence is robust
 - Less expensive and more convenient
 - Less acute toxicity
 - Less fatigue a benefit that lasts through at least 6 months post-treatment
 - With 40 Gy in 15 fractions, better cosmetic outcome and soft tissue toxicity
- An acceptable standard of care for nearly all patients with early breast cancer treated with breast conserving surgery.

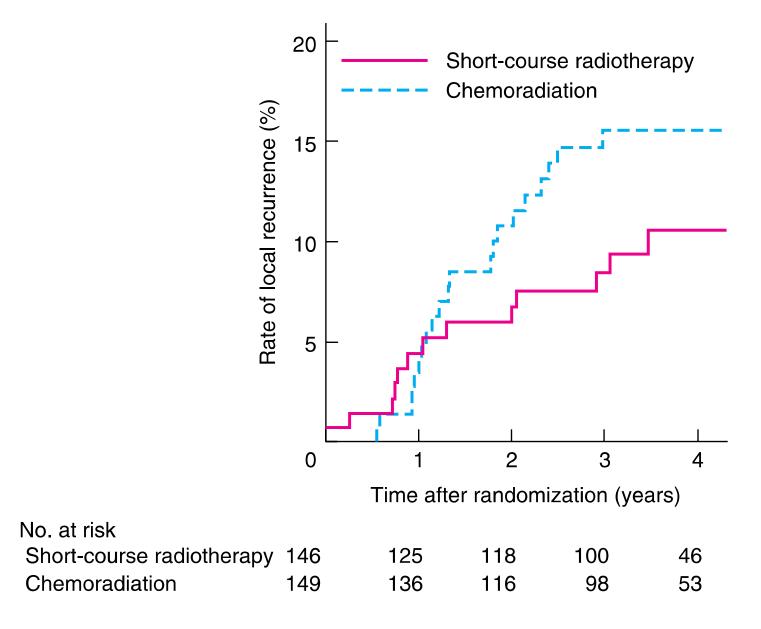
Bujko K et al Polish Colorectal Study group: Br J Surg 2006;93:1215

- Randomized trial, n=316 with median f/u 48 months
 - chemoradiation (FU/leucovorin) 50.4 Gy in 28 fractions preoperatively vs 25Gy in 5 fractions
 - TME 7 days after short course and 4-6 weeks post long course
- cT3T4, treatment goal was sphincter preservation with secondary survival. LR, DM, and late toxicity
- Fields were low pelvis standard bony landmark fields
- If outback chemotherapy was given it was 4 months for standard fractionation and 6 months for short course
- Q 6 month exams and CT X 3 years then yearly
- LR was any recurrence in the RT field

Bujko K et al Polish Colorectal Study group: Br J Surg 2006;93:1215

Acute effects

	Short course	Standard
Gr3/4 acute	3.2	18.2


	Short course	Standard
compliance	97.9	69.2

Bujko K et al Polish Colorectal Study group: Br J Surg 2006;93:1215

	cPR N(+)	cPR	cPR T1/2	cPR T3/4	os	DFS ₄
Short cours e	47.6	0.7	39.5	59.9	67.2	58.4
std	31.6	16.1	45.6	37.7	66.2	55.6

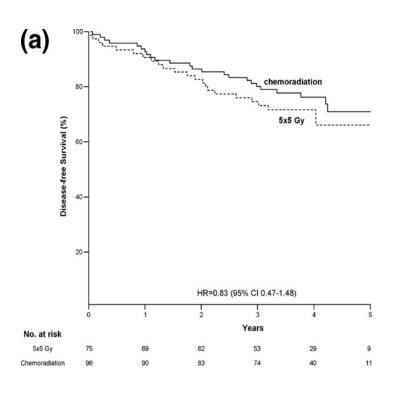
Bujko K et al Polish Colorectal Study group: Br J Surg 2006;93:1215

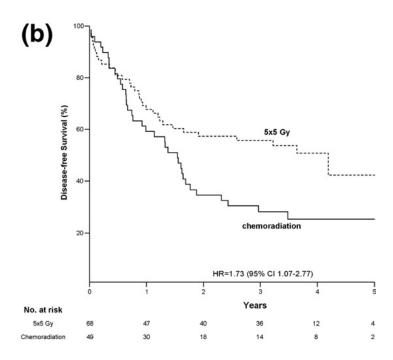
	Actuarial LR (%) ₄	Severe late complication s
Short course	10.6	10.1
Stnd	15.6	7.1

- Crude late toxicity 28.3 v 27, short vs stnd
- Crude late severe toxicity was 10 vs 7 %, short vs standard
- Short follow-up
- Await australian trial and stockholm III trial has 5 fractions with immediate vs delayed surgery

Table 2 Intention-to-treat analysis of severe late toxic effects in 279 patients*

	Short-course radiotherapy $(n = 138)$	Chemoradiation $(n = 141)$
Small/large intestine†	7 (5·1)	2 (1.4)
Urinary bladder	2 (1.4)	1 (0.7)
Skin (non-healing perineal wound)	0	4 (2.8)
Urether	1 (0.7)	1 (0.7)
Nerves: motor function	3 (2.2)	2 (1.4)
Nerves: sensory function	1 (0.7)	1 (0.7)
Nerves: pain	0	1 (0.7)
Postoperative hernia requiring surgery	1 (0.7)	1 (0.7)
Fracture of femoral neck	1 (0.7)	0
Total complications	16 in 14 patients	13 in 10 patients


Association b/w path response in metastatic nodes after preop therapy and risk of DM – Polish study


Bujko K et al *IJROBP* 2007;67:369

- N=316 randomized b/w 5Gy X 5 followed by 6 months chemo vs 1.8 Gy X 28 followed by 4 months chemotherapy. Surgery 1 week after short course and 4-6 weeks post standard
- RT four or three filed prone 1 cm above sacral promontory
- DFS, LC and DM similar in both arms
- ypN only independent prognostic factor for DFS
- ypN0 DFS similar
- ypN(+) DFS worse in standard arm 51% vs 25%
 - Same group LR 14% vs 27%
- More favorable path prognostic factors observed in chemoRT group

but no difference in long term outcomes

Phase III Randomized Trials – Moderate Hypofx 2.4- 4 Gy per day, 52-72 Gy, 19-30 txs

Study	Median FU, mo	Risk, GS, or NCCN	Technique	Regimen	BED, Gy	n	Outcome	Toxicity
Lukka et al. [15]	68	60% GS ≤6 31% GS 7 9% GS 8–10	3DCRT No IGRT	52.5 Gy/20 fx	62	466	5 yr FFBF 40% (NS)	Gr ≥3 2% (NS)
				66 Gy/33 fx	66	470	5 yr FFBF 43%	Gr ≥3 1%
Yeoh et al. [17]	90	n.s.	2D/3DCRT No IGRT	55 Gy/20 fx	66.8	108	7.5 yr FFBF 53% (p < 0.05)	Late GU; HR: 1.58 (95% CI, 1.01–2.47) favoring
		Outco	mes and	d compli	icati	on r	ates 34%	hypofractionation
Dearnaley et al. [18]	51			o conver				Gr ≥2 GU 0% (NS) Gr ≥2 GI 1% (NS)
		8	35-90+ %	PSADF	LR,	/IR		Gr ≥2 GU 2% Gr ≥2 GI 4% Gr ≥2 GU 2%
								Gr ≥2 GI 4%
Kuban et al. [14]; Hoffman et al. [19]	60		RTOG 0	415- 11 1	15 p	ts	3%	5 yr Gr ≥2 GU 16% (NS) 5 yr Gr ≥2 GI 10% (NS)
		Non-ir	nferior B	F, sl ↑ cc	mp	licat		5 yr Gr ≥2 GU 17% 5 yr Gr ≥2 GI 5%
Arcangeli et al.	70						1%	3 yr Gr ≥2 GU 16% (NS)
[12,13]			100% 9 mo ADT				*p ss for GS ≥4 + 3	3 yr Gr ≥2 GI 17% (NS)
				80 Gy/40 fx	80	85	5 yr FFBF 79%	3 yr Gr ≥2 GU 11% 3 yr Gr ≥2Gl 14%
Pollack et al. [16]	68	34% GS ≤6 47% GS 7 19% GS 8–10	IMRT IGRT	70.2 Gy/26 fx	84	151	5 yr BCDF 23% (NS)	5 yr Gr ≥2 GU 13% (p=0.16) 5 yr Gr ≥2 GI 9% (NS)
				78 Gy/36 fx	78	152	5 yr BCDF 21%	5 yr Gr ≥2 GU 13% 5 yr Gr ≥2 GI 9%

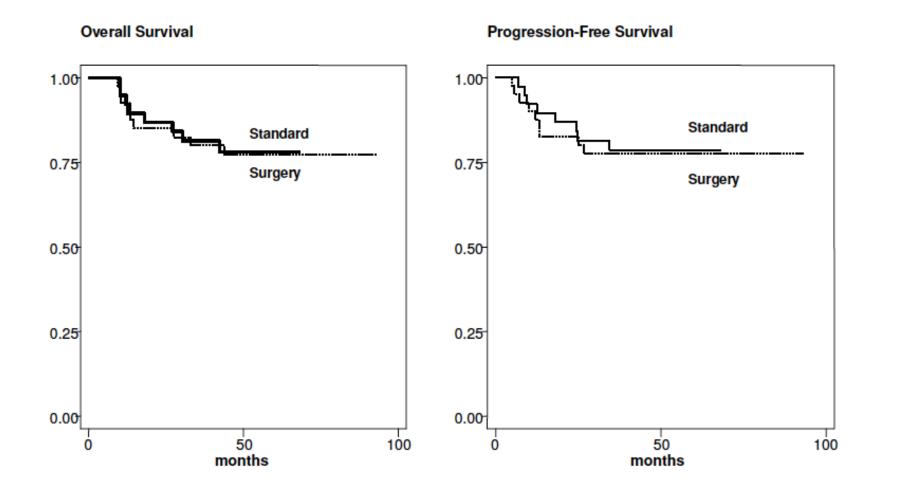
Koontz, Eur Urol 68:683, 2015

How is Gyn the same? different?

- Likely not preop as in rectal
 - high risk Stagelb cervical cancer, endometrial post op?
- Contains more tissue than prostate
 - true pelvis rather than to confluence of arteries
 - But....no IMRT used in these studies
- Same bowel concerns as pancreas and rectal.....
- Life span many longer than pancreas but equivalent to rectal and prostate

Brachytherapy versus radical hysterectomy – non-randomized matched phase II study Cetina et al, World Journal of Surgical Oncology 2009

- 80 pts 40 in each arm
- Standard arm external beam with cisplatin followed by 1-2 brachytherapy procedures for a total dose of 85 Gy
- For the surgery arm type III radical hysterectomy with bilateral pelvic lymph node dissection and para-aortic lymph node sampling within 7 weeks of radiation therapy
 - Post-op vaginal brachytherapy was give to patients with one or more high-risk factors for recurrence


Brachytherapy versus radical hysterectomy

non-randomized matched phase II study
 Cetina et al, World Journal of Surgical Oncology 2009

Treatment	Surgery	Brachytherapy
Number	40	40
Stage		
IB2	9 (22%)	9 (22%)
IIA	4 (10%)	4 (10%)
IIB	27 (68%)	27 (68%)
Histology		
Squamous	28 (70%)	28 (70%)
Adenocarcinoma	8 (20%)	8 (20%)
Adenosquamous	4 (10%)	4 (10%)

Brachytherapy versus radical hysterectomy

non-randomized matched phase II study
 Cetina et al, World Journal of Surgical Oncology 2009

Brachytherapy versus radical hysterectomy – non-randomized matched phase II study

Cetina et al, World Journal of Surgical Oncology 2009

Treatment	Sur	gery			Bra	chyt	hera	ру	
Toxicity/Grade	1	2	3	4	1	2	3	4	
Hydronephrosis	3	3	0	0	0	0	0	0	P < 0.016
Proctitis	1	3	0	0	1	10	1	1	P < 0.008
Cystitis	0	1	2	0	0	0	2	1	P = 0.785

Phase III study – Randomize Surgery vs. Brachytherapy

Cetina et al, Annals of Oncology, 2013

- FIGO stage IB2-IIB
- No evidence of cancer in para-aortic lymph nodes via CT scan
- Randomized before chemoradiation
- Chemotherapy cisplatin 40/m² and gemcitabine 125 mg/m² weekly for 6 weeks
- External beam for all pts. 50.4 Gy/28 fx

Phase III study – Randomize Surgery vs. Brachytherapy

Cetina et al, Annals of Oncology, 2013

Procedure/results	Received intervention	Intent – to - treat	
RH completed	86 (100%)	86 (77.4%)	
Pathologic CR	62 (72%)	62 (56%)	
Pathologic PR	24 (28%)	24 (21.6%)	
Residual tumor 0.6-2 cm	16 (18.6%)	16 (14.4%)	
Residual tumor 2-4	6 (7%)	6 (5.4%)	
Residual tumor > 4 cm	2 (2.3%)	2 (1.8%)	
Surgical margins in para	metria		
Positive	2 (2.3%)	2 (1.8%)	
Negative	84 (97.6%)	84 (75.6%)	
Pelvic lymph nodes			
Positive	9 (10.4%)	9 (8.1%)	
Negative	77 (89.5)	77 (69.3)	

Phase III study – Randomize Surgery vs. Brachytherapy

Cetina et al, Annals of Oncology, 2013

Conclusions:

الم مازام ما

- RH after chemoRT did not improve survival outcomes compared to RT plus brachytherapy
- RH after chemoRT is feasible and safe in hands of experience surgeons
- The study strongly suggests that patients treated with effective chemoRT + RH instead of standard chemo RT + brachytherapy does not compromise survival – especially in settings where brachytherapy resources are

Definitive Trial: Phase II - No brachytherapy

FIGO stage IB2-IIB Pelvic disease only

External beam 50 Gy / 25 + Weekly Cisplatin Followed by surgery

External beam 40.0
Gy/16 + weekly Cisplatin
Followed by Surgery

Hypofraction: BED and EQD2

Dose	Dose per fraction	Alpha/Beta	BED	EQD2
45	1.8	3	72.0	43.2
44	2.0	3	73.2	44.0
37.5	2.5	3	68.8	41.3
30	3.0	3	60.0	36.0
45	1.8	10	53.1	44.3
44	2.0	10	52.8	44.0
37.5	2.5	10	46.9	39.1
30	3.0	10	39.0	32.5
Brachy				
30	6.0	3	90.0	54.0
28	7.0	3	93.3	56.0
24	8.0	3	88.0	52.8
18	9.0	3	72.0	43.2
30	6.0	10	48.0	40.0
28	7.0	10	47.6	39.7
24	8.0	10	43.2	36.0
18	9.0	10	34.2	28.5

45/1.8 + 30/6 = **97.2 EQD2** vs 37.5/2.5 + 24/8 = **94.1 EQD2** for alpha/beta 3 30 fractions vs 18 fractions

Surgery:

- Radical hysterectomy 4 -6 weeks after radiation with removal of only abnormal nodes at that surgery and sampling of pelvic and para-aortics
- If positive para-aortics treatment with radiation therapy
- No surgery if progression of disease

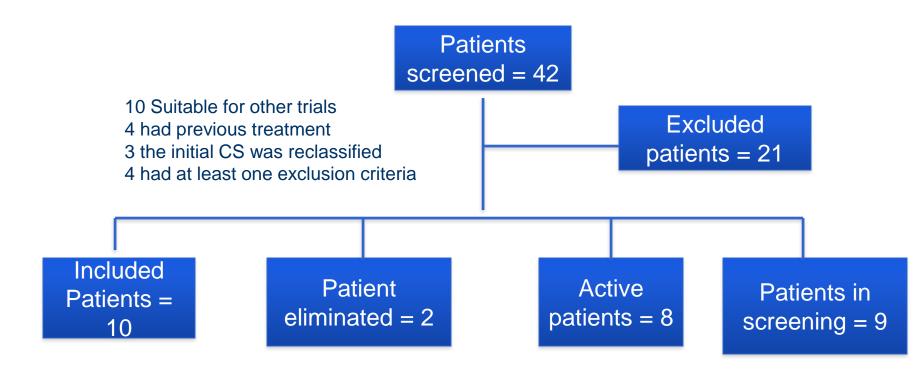
Chemotherapy:

 Weekly cisplatin – will give 5 courses only in the standard arm

Endpoints:

- Primary: PRO –EORTC and Cervix Subscale from FACT
- Secondary: relapse free survival, overall survival, complications: including days in hospital after surgery and blood transfusion, pathological response

Time Point	Purpose	
Before RT	Baseline	
2 weeks after RT start	Compare early acute toxicity	
End of RT/chmotherapy (at 5 weeks in both arm)	Maximum difference in acute toxicity	
4-6 Weeks after RT (before surgery)	Compare resolution of acute toxicity	
6 months after RT	Compare toxicity after surgery	
1 year from the start of RT	Early chronic toxicity	
2 years from the start of RT	Long term toxicity	


- Early stopping rules after 10 enrolled patients/per center and then every 20 enrolled patients
- If increase toxicity seen then terminate trial

Gynecologic Cancer InterGroup Cervix Cancer Research Network

GYNECOLOGIC CANCER INTERGROUP An Organization of International Cooperative Groups for Clinical Trials in Gynecologic Cancers

Hypofraction Trial in Mexico

Start of recruitment 11/20/2017

Cervix Cancer Education Symposium, January 2019

Hypofractionation Trial – Mexico Data

Age	Mean (min-max)	45 (24-69)	
Clinical Stage	IB2	5	
	IIA2	2	
	IIB	2	
Histology	Squamous Cell carcinoma	9	
Grade	2	6	
	3	3	
LVSI	NO	7	
	Yes	2	
Treatment	Standard	4	
	Hypofraction	5	

Hypofractionation Mexico

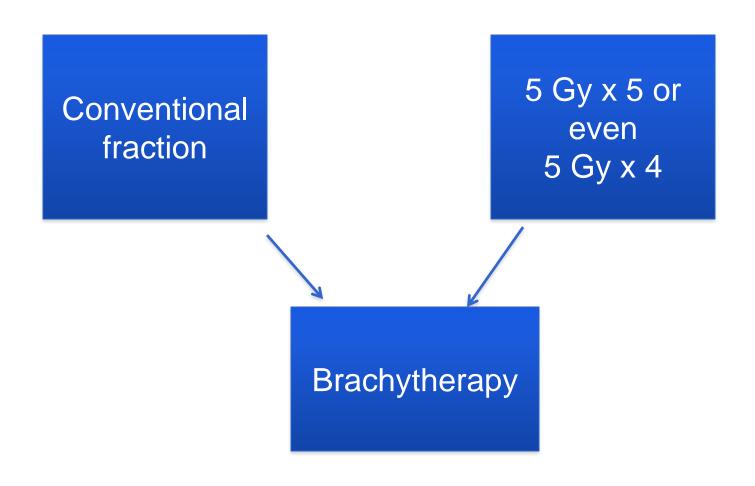
	Pain	Dermatitis	Cystitis	Colitis	Trans- rectal Bleeding
0		0			0
1	1 (11%)	0	1 (11%)	2 (22%)	0
2		0		1 (11%)	0
3		0			0
4		0			0
5		0			0

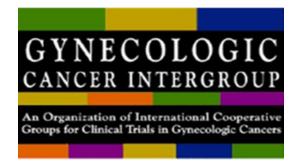
Definitive CRT: Phase II Randomize

45 Gy/25 fractions + weekly cisplatin

Versus

37.5 Gy/15 fractions+ weekly cisplatin


Brachytherapy schedule per institution protocol


ENDPOINT: PRO

- Chemotherapy: weekly cisplatin?
- Endpoints:
 - Primary: PRO Expanded prostrate cancer index composite (EPIC) and Cervix Subscale from FACT Secondary: relapse free survival and overall survival and chronic complications

However – can we make it even shorter????

Thought provoking Trial

Gynecologic Cancer InterGroup Cervix Cancer Research Network

Thank You

Cervix Cancer Education Symposium, January 2019