Utilising the graphical approach to multiple testing

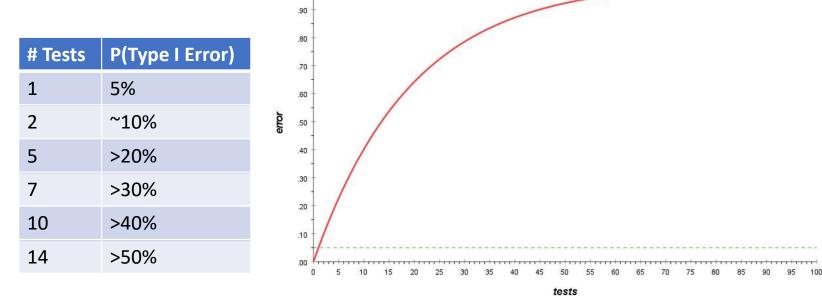
Nick Counsell (nicholas.counsell@ucl.ac.uk) University College London

Cancer Research UK and UCL Cancer Trials Centre

Multiple testing

We often want to address several questions of interest in an individual clinical trial – endpoints/arms/groups/times/etc.

<u>**Problem:**</u> this multiplicity inflates overall error rate, i.e. more comparisons \rightarrow more likely positive chance findings \square_{\downarrow}



Multiple testing

Addressing multiple objectives is a common issue in clinical trials. Regulatory guidelines are generally focused on confirmatory conclusions for proof of efficacy and decision making, also an important consideration in earlier phases

Can reduce multiplicity by prioritising objectives and then use statistical procedures to control and/or adjust as required, or justify why not required

Want to control the study-level false positive rate, the probability of rejecting at least one true null hypothesis (the global familywise error rate), through proper statistical adjustment to avoid incorrect conclusions

Controlling FWER

A test procedure has:

- weak control if the FWER ≤ α conditioning on the complete set of nulls (i.e. the intersection of all pairwise nulls)
- strong control if the FWER ≤ α under all partial nulls (i.e. regardless of which of the multiple comparisons have no true effect)

Common procedures and adjustments:

- single step (Bonferroni, PAAS, Simes, Dunnett)
- stepwise (Holm, Hochberg, Hommel, stepdown Dunnett)

Controlling FWER

These common test procedures can be conservative and data-driven.... should take clinical considerations into account as well as statistical power

Hierarchical test procedures can reflect relative importance of the multiple tests, whilst controlling FWER:

- fixed sequence procedure (order H_i and test until $p_i > \alpha$);
- fallback procedure (split α and test H_i at $\alpha_i + \alpha_{i-1}$ if $p_{i-1} < \alpha_{i-1}$);
- gatekeeping ('families' of endpoints).

Gatekeeping

Gatekeeping accounts for a hierarchical structure of our multiple hypotheses:

- Serial requires all hypotheses in family to be rejected before proceeding to the next family (which is tested using α)
- Parallel requires only one hypotheses in family to be rejected before proceeding to the next family (tested using the 'rejection gain factor' of α)
- Tree-structured combinations for more complex structures

This allows us to construct powerful multiple test procedures, based on the closed testing principle to control the FWER (considering all partial nulls). However, 2^m -1 intersections requiring many tests....

Graphical approach

Graphical approach provides a shortcut for structured hypotheses (importance, logical relationships) reducing this number to *m* through *s*tepwise gatekeeping

Flexible and powerful, combining non-hierarchical and hierarchical approaches

Intuitive and easier to specify and communicate testing strategies

Maintains strong control of FWER because of the closed test principle, and common approaches for test procedures can be represented as specific cases

Graphical approach

Directed weighted graphs represent the testing procedure with:

- nodes representing hypotheses H_i , assigned initial significance level α_i $(\sum_i \alpha_i \le \alpha)$;
- weighted directional edges g_{ij} from each node i ($\sum_j g_{ij} \le 1$) representing, if rejected, the fraction of H_i that will be passed to the H_j ;
- this graph is updated as hypotheses are rejected by removing the node, and updating significance levels and weighted edges.

Generally, maximise power if all nodes are accessible from other nodes (graph is irreducible) and $\sum_{i} g_{ii} = 1$ for each.

Example – ICON 9

- International phase III RCT in patients with relapsed platinum-sensitive ovarian cancer following a response to platinum-based chemotherapy
- Maintenance therapy with olaparib and cediranib or olaparib alone (randomised 1:1 stratified by BRCA, prior bev, PFI, surgery, country)
- Two primary endpoints and two groups of interest, therefore four comparisons leading to an overall type 1 error rate of ~18.5% if FWER not controlled

Example – ICON 9

Originally designed using a fixed-sequence serial gatekeeping approach:

- i. PFS, all patients
- ii. PFS, BRCA wild-type
- iii. OS, all patients (N=588, HR=0.75, 80% power)
- iv. OS, BRCA wild-type (N=350, HR=0.70, 80% power)

Based on where most likely to detect a difference; more interested in BRCA wild-type, as less benefit from maintenance olaparib than those with BRCA-mutation.

 α is available to be carried forward to the next objective in the sequence, as soon as there is a non-statistically significant result, α is used up and none is available for further tests. Conclusions can only be made if all previous analyses *p*<0.05.

PFS, BRCA wild-type

PFS, all patients

H1 1

1

H2 0

1

H3 0

H4 0 OS, all patients

OS, BRCA wild-type

 $\boldsymbol{\alpha} = (1\ 0\ 0\ 0)$ $\boldsymbol{G} = \begin{pmatrix} 0\ 1\ 0\ 0\\ 0\ 0\ 1\ 0\\ 0\ 0\ 0\ 1\\ 0\ 0\ 0\ 0 \end{pmatrix}$

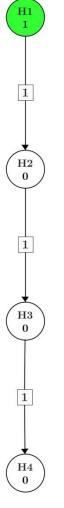
PFS, all patients Test H_1 at level $\alpha_1 = \alpha^* 1 = \alpha$

PFS, BRCA wild-type Test H_2 at level $\alpha_2 = \alpha * 0 = 0$

OS, all patients

Test H_3 at level $\alpha_3 = \alpha^* 0 = 0$

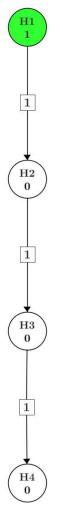
OS, BRCA wild-type Test H_a at level $\alpha_a = \alpha^* 0 = 0$

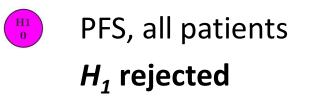


PFS, all patients

 H_1 rejected at level α_1 if $p_1 < 0.05$

node removed and α_1 passed to H_2 with weight 1





H2 1 H3 0 H4 0

```
PFS, BRCA wild-type
Test H<sub>2</sub> at level \alpha_2 = \alpha^* 1 = \alpha
```

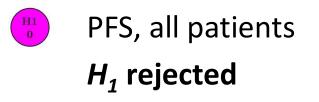
OS, all patients

Test H_3 at level $\alpha_3 = \alpha^* 0 = 0$

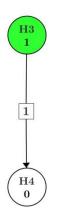
OS, BRCA wild-type Test H_a at level $\alpha_a = \alpha^* 0 = 0$

PFS, all patients H₁ rejected

PFS, BRCA wild-type H_2 rejected at level α_2 if $p_2 < 0.05$ node removed and α_2 passed to H_3 with weight 1



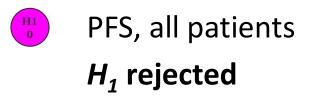
PFS, BRCA wild-type
 *H*₂ rejected



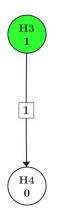
OS, all patients

Test H_3 at level $\alpha_3 = \alpha^* 1 = \alpha$

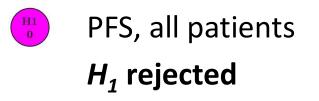
OS, BRCA wild-type Test H_a at level $\alpha_a = \alpha^* 0 = 0$



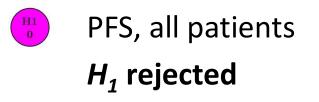
PFS, BRCA wild-type
 *H*₂ rejected



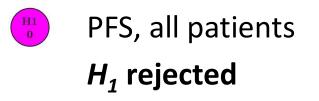
OS, all patients H_3 rejected at level α_3 if $p_3 < 0.05$ node removed and α_3 passed to H_4 with weight 1



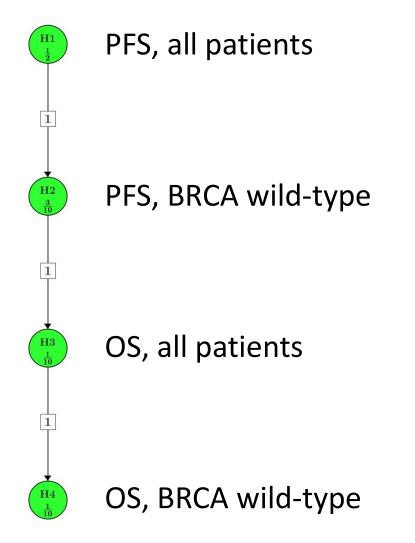
- PFS, BRCA wild-type
 *H*₂ rejected
- OS, all patients
 *H*₃ rejected
- OS, BRCA wild-type **Test** H_4 at level $\alpha_4 = \alpha^* 1 = \alpha$



- PFS, BRCA wild-type
 *H*₂ rejected
- OS, all patients
 *H*₃ rejected
- OS, BRCA wild-type H_4 rejected at level α_4 if $p_4 < 0.05$



- PFS, BRCA wild-type
 *H*₂ rejected
- OS, all patients
 *H*₃ rejected
- OS, BRCA wild-type
 H₄ rejected



 $\boldsymbol{\alpha} = (0.5 \ 0.3 \ 0.1 \ 0.1)$ $\boldsymbol{G} = \begin{pmatrix} 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \\ 0 \ 0 \ 0 \end{pmatrix}$

PFS, all patients Test H_1 at level $\alpha_1 = 0.5\alpha$

PFS, BRCA wild-type Test H_2 at level $\alpha_2 = 0.3\alpha$

OS, all patients

H1

1

H2 <u>3</u>

 $\mathbf{H3}$

1

H4

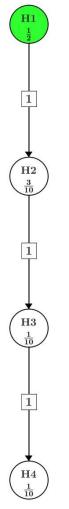
Test H_3 at level $\alpha_3 = 0.1\alpha$

OS, BRCA wild-type Test H_4 at level $\alpha_4 = 0.1\alpha$ $\boldsymbol{\alpha} = (0.5 \ 0.3 \ 0.1 \ 0.1)$ $\boldsymbol{G} = \begin{pmatrix} 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \\ 0 \ 0 \ 0 \end{pmatrix}$

PFS, all patients

 H_1 rejected at level α_1 if $p_1 < 0.025$

node removed and α_1 passed to H_2 with weight 1



PFS, all patients*H*₁ rejected

H2 4 5 H3 10 H4 10 H4 10

PFS, BRCA wild-type Test H₂ at level $\alpha_2 = 0.3\alpha + 0.5\alpha = 0.8\alpha$

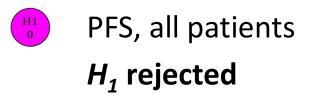
OS, all patients

Test H_3 at level $\alpha_3 = 0.1\alpha$

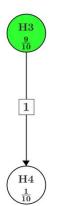
OS, BRCA wild-type Test H_4 at level $\alpha_4 = 0.1\alpha$

PFS, all patients*H*₁ rejected

PFS, BRCA wild-type H_2 rejected at level α_2 if $p_2 < 0.04$ node removed and α_2 passed to H_3 with weight 1



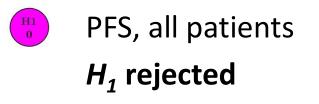
PFS, BRCA wild-type
 *H*₂ rejected



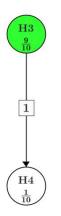
OS, all patients

Test H_3 at level $\alpha_3 = 0.1\alpha + 0.8\alpha = 0.9\alpha$

OS, BRCA wild-type Test H_4 at level $\alpha_4 = 0.1\alpha$



PFS, BRCA wild-type
 *H*₂ rejected



OS, all patients H_3 rejected at level α_3 if $p_3 < 0.045$ node removed and α_3 passed to H_4 with weight 1

PFS, all patients *H*₁ rejected

- PFS, BRCA wild-type
 *H*₂ rejected
- OS, all patients
 *H*₃ rejected
- OS, BRCA wild-type Test H₄ at level $\alpha_4 = 0.1\alpha + 0.9\alpha = \alpha$

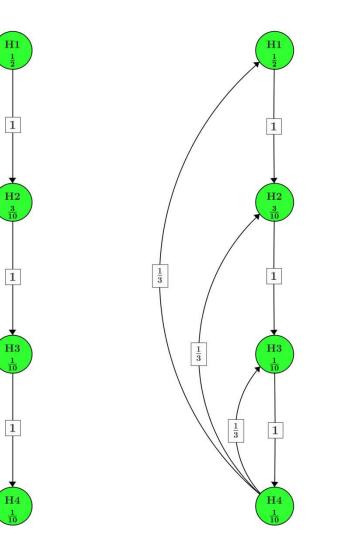
PFS, all patients *H*₁ rejected

- PFS, BRCA wild-type
 *H*₂ rejected
- OS, all patients
 *H*₃ rejected
- OS, BRCA wild-type H_4 rejected at level α_4 if $p_4 < 0.05$

PFS, all patients *H*₁ rejected

- PFS, BRCA wild-type
 *H*₂ rejected
- OS, all patients
 *H*₃ rejected
- OS, BRCA wild-type
 H₄ rejected

Modified fallback procedures

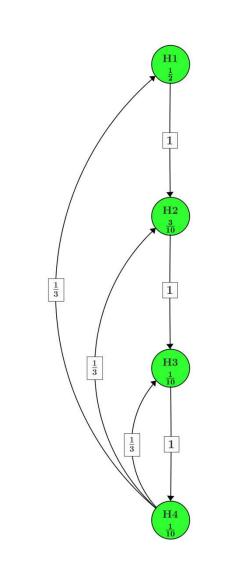


No 'wasted' alpha

$$\boldsymbol{\alpha} = (0.5 \ 0.3 \ 0.1 \ 0.1)$$
$$\boldsymbol{G} = \begin{pmatrix} 0 \ 110 \ 0 \\ 0 \ 001 \ 0 \\ 0 \ 000 \ 0 \\ 0 \ 1 \\ 0 \ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Modified fallback procedures

$$\boldsymbol{\alpha} = (0.5 \ 0.3 \ 0.1 \ 0.1)$$
$$\boldsymbol{G} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 - \varepsilon_1 & 0 & \varepsilon_1 & 0 \\ 1 - \varepsilon_2 & 0 & 0 & \varepsilon_2 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$



H1

1

H2

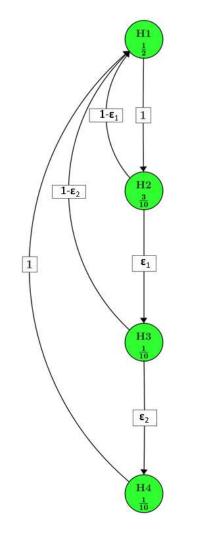
 $\frac{3}{10}$

1

H3

1

H4



Bonferroni procedure

PFS, BRCA wild-type

$$\begin{array}{c} H4\\ \frac{1}{4} \end{array}$$

 $\left(\begin{array}{c} H2\\ \frac{1}{4} \end{array} \right)$

OS, BRCA wild-type

Bonferroni procedure

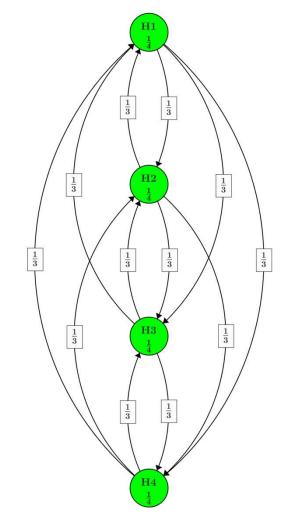
PFS, all patients

 H_1 rejected at level α_1 if $p_1 < 0.0125$

PFS, BRCA wild-type H_2 rejected at level α_2 if $p_2 < 0.0125$

OS, all patients H₃ rejected at level α₃ if p₃<0.0125

OS, BRCA wild-type H_4 rejected at level α_4 if $p_4 < 0.0125$



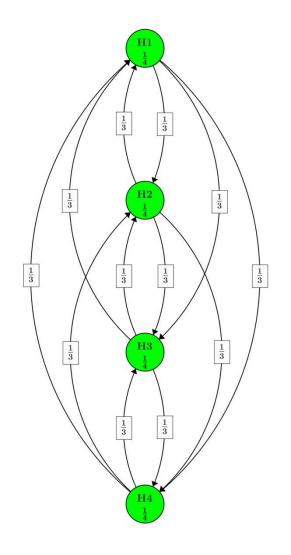
PFS, all patients

PFS, BRCA wild-type

OS, all patients

OS, BRCA wild-type

 $\boldsymbol{\alpha} = \begin{pmatrix} 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix} \\ \boldsymbol{\beta} = \begin{pmatrix} 0 & 1/3 & 1/3 & 1/3 \\ 1/3 & 0 & 1/3 & 1/3 \\ 1/3 & 1/3 & 0 & 1/3 \\ 1/3 & 1/3 & 0 & 1/3 \\ 1/3 & 1/3 & 1/3 & 0 \end{pmatrix}$



PFS, all patients

 H_1 rejected at level α_1 if $p_1 < 0.0125$

PFS, BRCA wild-type H_2 rejected at level α_2 if $p_2 < 0.0125$

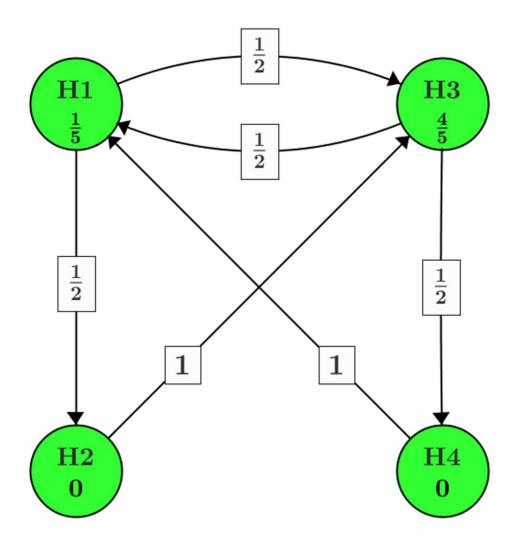
OS, all patients H₃ rejected at level α₃ if p₃<0.0125

OS, BRCA wild-type H_4 rejected at level α_4 if $p_4 < 0.0125$

Holm procedure

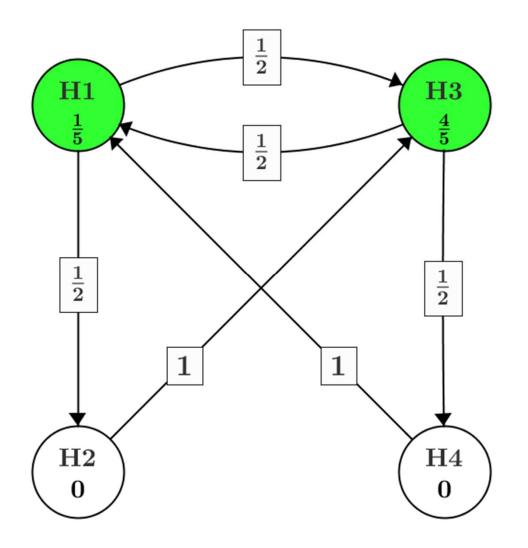
Generalised graphical approach

- $\alpha = (\alpha_1, ..., \alpha_m)$ the local significance levels such that $\sum_i \alpha_i \le \alpha$
- **G**=(g_{ij}) the *m* by *m* transition matrix such that $0 \le g_{ij} \le 1$, $g_{ii} = 0$, and $\sum_{j} g_{ij} \le 1$
- <u>Algorithm:</u> 0. Set I = M. 1. Let $j = \arg\min_{i \in I} p_i / \alpha_i$ 2. If $p_j \leq \alpha_j$, reject H_j ; otherwise stop. 3. Update the graph: $I \rightarrow I \setminus \{j\}$ $\alpha_\ell \rightarrow \begin{cases} \alpha_\ell + \alpha_j g_{j\ell}, & \ell \in I \\ 0 & \text{otherwise} \end{cases}$ $g_{\ell k} \rightarrow \begin{cases} \frac{g_{\ell k} + g_{\ell j} g_{jk}}{1 - g_{\ell j} g_{j\ell}}, & \ell, k \in I, & \ell \neq k \\ 0 & \text{otherwise} \end{cases}$ 4. If $|I| \ge 1$, go to step 1; otherwise stop.

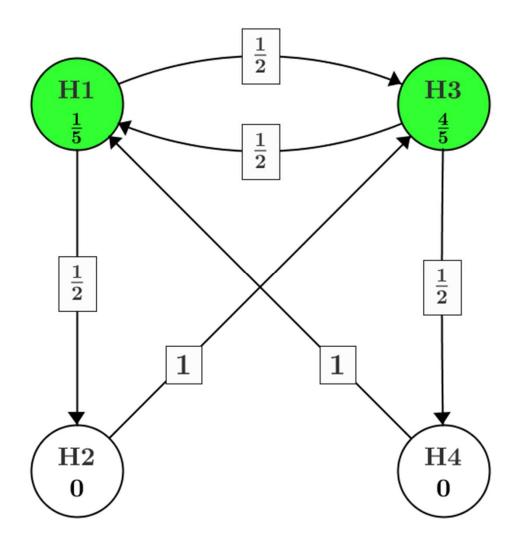


H1: PFS, all patients*H2*: PFS, BRCA wild-type*H3*: OS, all patients*H4*: OS, BRCA wild-type

$$\boldsymbol{\alpha} = \begin{pmatrix} \frac{1}{5} & 0 & \frac{4}{5} & 0 \end{pmatrix}$$
$$\boldsymbol{G} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 1 & 0 & 0 & 0 \end{pmatrix}$$



H1: p=0.001 H2: p=0.001 H3: p=0.04 H4: p=0.06 (hypothetical p-values)

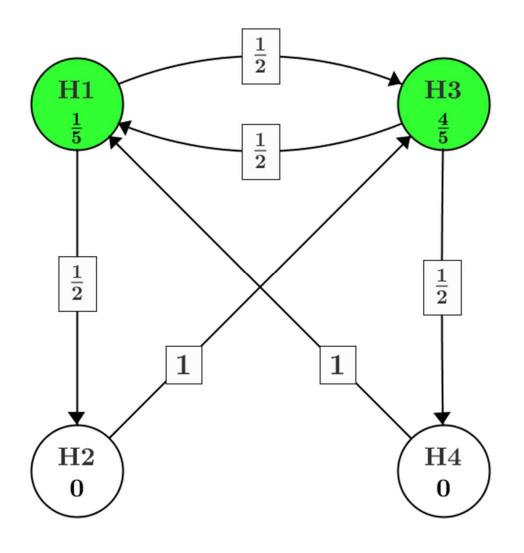


H1: *p*=0.001 rejected

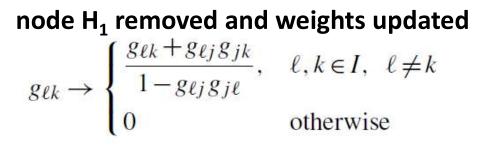
node H_1 removed and α_1 passed using

 $\alpha_{\ell} \to \begin{cases} \alpha_{\ell} + \alpha_{j} g_{j\ell}, & \ell \in I \\ 0 & \text{otherwise} \end{cases}$

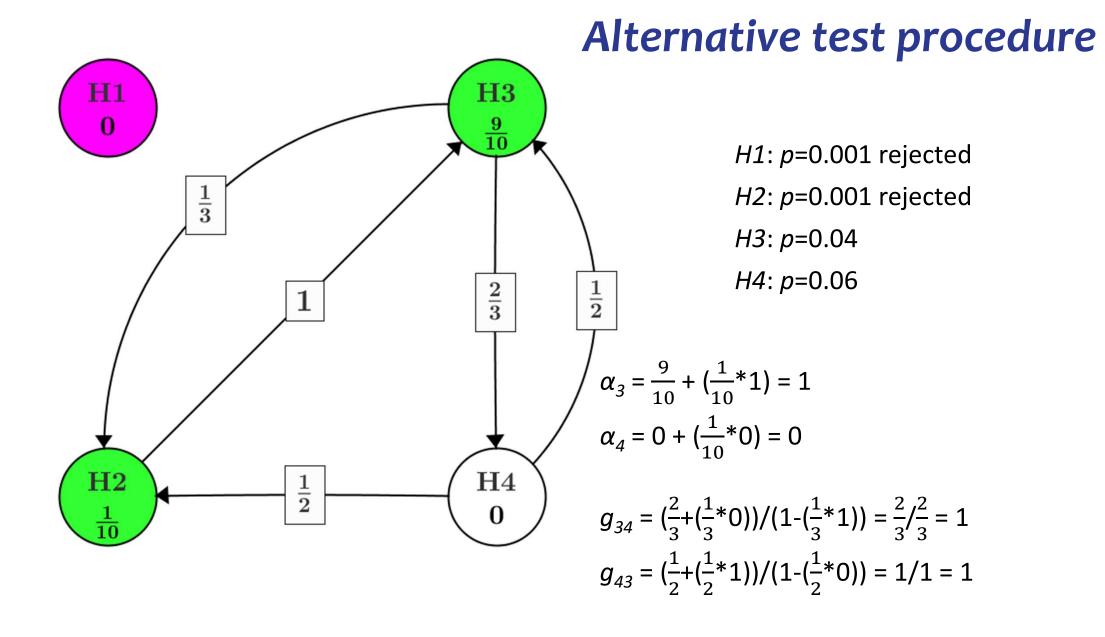
$$\alpha_2 = 0 + \left(\frac{1}{5} * \frac{1}{2}\right) = \frac{1}{10}$$
$$\alpha_3 = \frac{4}{5} + \left(\frac{1}{5} * \frac{1}{2}\right) = \frac{9}{10}$$
$$\alpha_4 = 0 + \left(\frac{1}{5} * 0\right) = 0$$



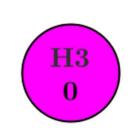
H1: *p*=0.001 rejected



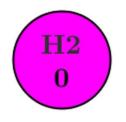
$$\begin{split} g_{23} &= (1 + (0^* \frac{1}{2})) / (1 - (0^* \frac{1}{2})) = 1/1 = 1 \\ g_{24} &= (0 + (0^* 0)) / (1 - (0^* \frac{1}{2})) = 0/1 = 0 \\ g_{32} &= (0 + (\frac{1}{2} \frac{1}{2})) / (1 - (\frac{1}{2} \frac{1}{2})) = \frac{1}{4}/\frac{3}{4} = 1/3 \\ g_{34} &= (\frac{1}{2} + (\frac{1}{2} \frac{1}{2})) / (1 - (\frac{1}{2} \frac{1}{2})) = \frac{1}{2}/\frac{3}{4} = 2/3 \\ g_{42} &= (0 + (1^* \frac{1}{2})) / (1 - (1^* 0)) = \frac{1}{2}/1 = \frac{1}{2} \\ g_{43} &= (0 + (1^* \frac{1}{2})) / (1 - (1^* 0)) = \frac{1}{2}/1 = \frac{1}{2} \end{split}$$







H1: *p*=0.001 rejected *H2*: *p*=0.001 rejected *H3*: *p*=0.04 rejected *H4*: *p*=0.06 not rejected



Adjusted p-values

- To use adjusted p-values p_1^{adj} , ..., p_m^{adj} , define $\mathbf{w} = (w_{1, \dots, m} w_m) = (\alpha_1, \dots, \alpha_m)/\alpha$
- <u>Algorithm:</u>

0. Set
$$I = M$$
 and $p_{\max} = 0$.
1. Let $j = \arg\min_{i \in I} p_i/w_i$.
2. Calculate $p_j^{\operatorname{adj}} = \max\{p_j/w_j, p_{\max}\}$ and set $p_{\max} = p_j^{\operatorname{adj}}$
3. Update the graph:
 $I \to I \setminus \{j\}$
 $w_\ell \to \begin{cases} w_\ell + w_j g_{j\ell}, & \ell \in I \\ 0 & \text{otherwise} \end{cases}$
 $g_{\ell k} \to \begin{cases} \frac{g_{\ell k} + g_{\ell j} g_{jk}}{1 - g_{\ell j} g_{j\ell}}, & \ell, k \in I, & \ell \neq k \\ 0 & \text{otherwise} \end{cases}$
4. If $|I| \ge 1$, go to step 1; otherwise stop.
5. Reject all hypotheses H_j with $p_j^{\operatorname{adj}} \le \alpha$.

Conclusions

The graphical approach is a powerful and efficient way to control the studylevel false positive rate for multiple testing in clinical trials

Intuitive method and easy to communicate with a hierarchical structure reflecting the relative importance of the multiple objectives

Choosing the testing procedure at the design stage has to balance statistical power (α -splitting) with allowing the testing of lower-order hypotheses

References

R-packages:

- http://cran.r-project.org/web/packages/gMCP/ (gMCP: Graph Based Multiple Comparison Procedures)
- http://cran.r-project.org/web/packages/multxpert/ (multxpert: Common Multiple Testing Procedures and Gatekeeping Procedures)

Regulatory guidelines:

- EMA "Guideline on multiplicity issues in clinical trials"
- FDA "Multiple endpoint analyses"

References

- Bretz F, Maurer W, Brannath W, Posch M. A graphical approach to sequentially rejective multiple test procedures. Stat Med. 2009 Feb 15;28(4):586-604.
- Bretz F, Maurer W, Hommel G. Test and power considerations for multiple endpoint analyses using sequentially rejective graphical procedures. Stat Med. 2011 Jun 15;30(13):1489-1501.
- Burman CF, Sonesson C, Guilbaud O. A recycling framework for the construction of Bonferronibased multiple tests. Stat Med. 2009 Feb 28;28(5):739-761.
- Dmitrienko A, Offen WW, Westfall PH. Gatekeeping strategies for clinical trials that do not require all primary effects to be significant. Stat Med. 2003 Aug 15;22(15):2387-2400.
- Elyashiv O, Ledermann J, Parmar G, Farrelly L, Counsell N, Feeney A, El-Khouly F, Macdonald I, Neto A, Arthur-Darkwa E, Burnett E, Jayson GC, Mileshkin L, Gourley C, Nicum S. ICON 9-an international phase III randomized study to evaluate the efficacy of maintenance therapy with olaparib and cediranib or olaparib alone in patients with relapsed platinum-sensitive ovarian cancer following a response to platinum-based chemotherapy. Int J Gynecol Cancer. 2021 Jan;31(1):134-138.
- Marcus R, Peritz E, Gabriel KR. On closed testing procedures with special reference to ordered analysis of variance. Biometrika. 1976 Dec;63(3):655–660.